
Escuela

Politécnica

Superior

Computación Cuántica
y sus aplicaciones en
Inteligencia Artificial

Grado en Ingeniería Informática

Trabajo Fin de Grado

Autor:
Vicent Baeza Esteve
Tutor/es:
Francisco Antonio Pujol Lopez

Mayo 2024

Computación Cuántica y sus
aplicaciones en Inteligencia Artificial

Estudio sobre la computación cuántica y sus aplicaciones en la
inteligencia artificial

Autor
Vicent Baeza Esteve

Tutor/es
Francisco Antonio Pujol Lopez

Departamento de Tecnología Informática y Computación

Grado en Ingeniería Informática

Escuela

Politécnica

Superior

ALICANTE, Mayo 2024

Resumen
Actualmente, las demandas computacionales de los algoritmos de inteligencia artificial están
creciendo a un ritmo veloz. Los modelos más potentes de inteligencia artificial actuales re-
quieren de una cantidad de cómputo impresionante para ser entrenados y ejecutados. Con
las tendencias actuales esta demanda de recursos no hará más que crecer en los próximos
años, agravando aún más el problema que supone entrenar y ejecutar este tipo de modelos
de inteligencia artificial.

Una de las posibles soluciones a este problema es el uso de la computación cuántica, una
rama de la computación que utiliza ciertas propiedades de la física cuántica para acelerar
y mejorar la eficiencia de ciertos algoritmos. Mediante el uso de ordenadores y procesado-
res especializados que exploten estas propiedades, se pueden diseñar algoritmos para ciertos
problemas que reducen la complejidad computacional y, por lo tanto, las demandas compu-
tacionales.

En este trabajo se analizarán los elementos básicos de la computación cuántica y sus apli-
caciones principales orientadas a la inteligencia artificial. Para cada una de las aplicaciones
analizadas, también se estudiará su posible impacto en la eficiencia y eficacia, y algunas de
las implementaciones actuales que la utilicen.

Índice general
1 Introducción 1

1.1 Objetivos . 1
1.2 Metodología . 2
1.3 Estructura del trabajo . 2

2 Computación cuántica 3
2.1 Fundamentos físicos de la computación cuántica 3

2.1.1 Sistemas físicos de los ordenadores cuánticos 4
2.1.2 Notación bra-ket . 4

2.1.2.1 Kets . 5
2.1.2.2 Bras . 5
2.1.2.3 Sistemas compuestos . 6

2.2 Bits cuánticos . 6
2.2.1 Midiendo bits cuánticos . 7
2.2.2 Fase global . 8
2.2.3 Esfera de Bloch . 8
2.2.4 Múltiples cúbits . 10

2.2.4.1 Entrelazamiento de cúbits . 10
2.2.5 Notación vectorial . 11

2.3 Puertas lógicas cuánticas . 12
2.3.1 Puertas de Pauli . 13
2.3.2 Puerta Hadamard . 15

2.3.2.1 Puertas de cambio de base 16
2.3.3 Puertas de desplazamiento de fase . 17
2.3.4 Puerta SWAP . 17
2.3.5 Puertas controladas . 18

2.3.5.1 Puerta Toffoli . 19
2.3.5.2 Puerta CZ . 20
2.3.5.3 Puertas de desplazamiento de fase controladas 21
2.3.5.4 Puerta CSWAP . 21

2.3.6 Puertas compuestas . 22
2.3.6.1 Puertas con exponentes . 22
2.3.6.2 Puertas en paralelo . 23

2.4 Circuitos cuánticos . 24
2.4.1 Cables cuánticos . 24
2.4.2 Puertas en circuitos cuánticos . 25

2.4.2.1 Puertas X, CX y Toffoli . 25
2.4.2.2 Puerta CZ . 26
2.4.2.3 Puertas SWAP y CSWAP . 26

vii

viii Índice general

2.4.3 Medidores . 26

3 Inteligencia artificial 29
3.1 Neuronas artificiales . 30

3.1.1 Perceptrón . 31
3.2 Redes neuronales artificiales . 33
3.3 Entrenamiento . 35

3.3.1 Backpropagation . 35
3.3.2 Descenso por gradiente . 38

4 Algoritmos de multiplicación de matrices 39
4.1 Algoritmos clásicos . 39

4.1.1 Algoritmo de Strassen . 40
4.1.2 Algoritmo de Coppersmith-Winograd 42

4.2 Algoritmos cuánticos . 42
4.2.1 Por test de intercambio (swap test) . 43
4.2.2 Otros algoritmos . 46

4.3 Análisis teórico de las complejidades . 47
4.3.1 Conclusiones del análisis . 48

5 Búsqueda de Grover 49
5.1 Algoritmo de Grover . 49

5.1.1 Inicialización . 49
5.1.2 Búsqueda . 50
5.1.3 Inversión sobre la media . 51
5.1.4 Iteraciones . 52
5.1.5 Algoritmo completo . 53

5.2 Aplicaciones en la inteligencia artificial . 55

6 Computación cuántica adiabática 57
6.1 Algoritmo de evolución adiabática . 57

6.1.1 Evolución adiabática aproximada . 59
6.2 Problemas de satisfacibilidad . 60
6.3 Ordenadores D-Wave . 61

6.3.1 Arquitectura D-Wave . 63
6.3.2 Topología Chimera . 63
6.3.3 Topología Pegasus . 66

6.4 Aplicaciones en la inteligencia artificial . 66

7 Conclusiones 69
7.1 Aportaciones . 69
7.2 Posibles ampliaciones . 70

Bibliografía 73

Índice de figuras
2.1 Representación de un vector v⃗ en la esfera de Bloch 9
2.2 Puerta X en la esfera de Bloch . 13
2.3 Puerta Y en la esfera de Bloch . 14
2.4 Puerta Z en la esfera de Bloch . 14
2.5 Puerta H en la esfera de Bloch . 15
2.6 Circuito cuántico con tres cables de 1, 3 y n cúbits 24
2.7 Circuito con un cable de cúbits (arriba) y de bits (abajo) 25
2.8 Circuito cuántico con varias puertas lógicas 25
2.9 Circuito cuántico con las puertas CY , CCH, CS y CBell 25
2.10 Circuito con X (izquierda), CX (centro) y Toffoli (derecha) 26
2.11 Circuito cuántico con una puerta CZ . 26
2.12 Circuito con SWAP (izquierda) y CSWAP (derecha) 26
2.13 Circuito cuántico con un medidor . 27
2.14 Circuito con CH, un medidor y H con control clásico 27

3.1 Visualización de una neurona con 3 entradas 30
3.2 Representación gráfica de algunas funciones de activación 31
3.3 Representación gráfica de un perceptrón en R2 31
3.4 Algoritmo de aprendizaje para un perceptrón 33
3.5 Red con 3 neuronas de entrada, 4 ocultas y 2 de salida 33
3.6 Red neuronal con 1 capa de entrada, 2 ocultas y 1 de salida 35

4.1 Algoritmo iterativo de multiplicación de matrices 39
4.2 Algoritmo de Strassen . 41
4.3 Circuito para una iteración de Swap test de 1 cúbit 43
4.4 Circuito para una iteración de Swap test de n cúbits 45
4.5 Algoritmo de multiplicación de matrices basado en Swap test 46

5.1 Inicialización de una búsqueda de Grover para 8 elementos 50
5.2 Amplitudes tras aplicar Us en una búsqueda de Grover 51
5.3 Amplitudes tras 1 iteración del algoritmo de Grover 52
5.4 Circuito cuántico para el algoritmo de Grover 52
5.5 Amplitudes de una búsqueda de Grover del estado |010〉 53
5.6 Algoritmo de Grover para M conocida . 54
5.7 Algoritmo de Grover para M no conocida . 55

6.1 Hamiltoniano que resuelve un problema de optimización 57
6.2 Evolución adiabática de Hi a Hf pasando por Hx 58
6.3 Hamiltonianos finales para un problema de satisfacibilidad 60
6.4 Imagen de un ordenador D-Wave One . 61

ix

x Índice de figuras

6.5 Temperaturas de cada placa de refrigeración de un ordenador D-Wave 62
6.6 Celda D-Wave de tamaño 4, con 8 cúbits y 16 correlaciones internas 64
6.7 Correlaciones internas (verde) y externas (azul) de un Chimera de 32 cúbits . 64
6.8 Visualización del procesador D-Wave One . 65
6.9 Correlaciones de los cúbits de la topología Pegasus 66

Índice de tablas
2.1 Sistemas físicos en la computación cuántica 4
2.2 Efectos de las puertas X, Y y Z . 15
2.3 Efectos de la puerta H . 16
2.4 Efectos de las puertas de desplazamiento de fase 17
2.5 Efectos de la puerta SWAP . 18
2.6 Efectos de la puerta CX . 18
2.7 Efectos de la puerta CU . 19
2.8 Efectos de la puerta Toffoli . 20
2.9 Efectos de la puerta CZ . 21
2.10 Efectos de las puertas de desplazamiento de fase controladas 21
2.11 Efectos de la puerta CSWAP . 22

4.1 Resultado de un Swap test de 1 cúbit respecto a |ϕ, ψ〉 44
4.2 Complejidades de los algoritmos estudiados 47
4.3 Tamaño de embedding de los modelos analizados 47
4.4 Estimación del coste de ejecución de los algoritmos estudiados 48
4.5 Coste de ejecución respecto al algoritmo iterativo 48

6.1 Ordenadores adiabáticos D-Wave . 62
6.2 Topologías Chimera utilizadas en los procesadores D-Wave 65

xi

1 Introducción

La computación cuántica es un campo que nació en los años 80, como posible solución al
rápido incremento de las demandas de procesamiento incurridas por los ordenadores de la
época. Treinta años más tarde, esa demanda no ha hecho más que crecer. Uno de los campos
que más ha hecho crecer esta demanda es la inteligencia artificial, que requiere de cantidades
inmensas de datos y procesamiento para entrenar modelos de inteligencia artificial que resuel-
van adecuadamente problemas muy complejos pero muy útiles, como el reconocimiento de
imágenes y vídeo, el procesamiento de lenguaje natural o la detección de patrones o similitu-
des. Las grandes demandas de datos han hecho que actualmente sea necesario tener grandes
conjuntos de ordenadores o superordenadores para entrenar los modelos más sofisticados.

Ante las crecientes demandas computacionales de la inteligencia artificial, la computación
cuántica podría suponer un cambio de paradigma total, ya que muchas de las técnicas que
veremos a continuación pueden suponer grandes mejoras en la eficiencia y eficacia a la hora
de desarrollar, entrenar y ejecutar modelos de inteligencia artificial. El aprovechamiento de
ciertas propiedades de la física cuántica hace que sea posible el desarrollo de mejores algo-
ritmos y técnicas de lo que sería posible con ordenadores clásicos. Explicaremos en detalle
más adelante muchas de estas técnicas, sus implementaciones actuales y su posible uso en el
futuro cercano.

La computación cuántica supone un cambio de paradigma casi total respecto a la compu-
tación clásica. La manera de representar información, el procesamiento y depuración de datos,
la lógica cuántica y sus puertas lógicas correspondientes y los circuitos cuánticos difieren mu-
cho de sus equivalentes en los ordenadores actuales. Es por esto que su integración, aunque
pueda reducir el coste temporal de la inteligencia artificial masivamente, haya sido reducida
actualmente. No obstante, con el constante desarrollo tecnológico y algorítmico de la compu-
tación cuántica, su uso en la inteligencia artificial cada vez se está volviendo más y más
común.

1.1 Objetivos
En este apartado se enumeran los objetivos concretos que se han tenido en cuenta durante el
desarrollo de este trabajo.

• Analizar diferentes técnicas de la computación cuántica y el beneficio potencial que
puede suponer su integración en la inteligencia artificial

• Estudiar los problemas específicos que supone la computación cuántica y las posibles
soluciones a estos problemas

• Analizar casos de uso que verifiquen la validez del estudio realizado

1

2 Introducción

1.2 Metodología
Para la realización de este TFG, se han analizado las aplicaciones y casos de uso que se han
considerado más relevantes a la hora de integrar la inteligencia artificial con la computación
cuántica. Como la computación cuántica es un campo emergente, no está del todo claro
cuáles de sus muchas aplicaciones serán las más útiles a la hora de aplicarlas a la inteligencia
artificial en el futuro. Se han priorizado las aplicaciones con mayor posible beneficio, así como
las “desarrolladas”, es decir, las que tienen una mayor cantidad de estudios anteriores y de
implementaciones físicas.

En base al criterio anterior, se han analizado 3 aplicaciones: los algoritmos de multiplicación
de matrices cuánticos (capítulo 4), la búsqueda de Grover (capítulo 5) y la computación
adiabática cuántica (capítulo 6).

1.3 Estructura del trabajo
A continuación se describe la estructura del trabajo, junto con un breve resumen del contenido
de cada capítulo.

• Capítulo 2: Computación cuántica: introduce al lector a la computación cuántica.
Se explican los fundamentos físicos de la computación cuántica, estados cuánticos, bits
cuánticos, puertas lógicas cuánticas y circuitos cuánticos.

• Capítulo 3: Inteligencia artificial: introducción a la inteligencia artificial y a mu-
chos de los conceptos básicos de la misma. Se explican las neuronas artificiales, las
redes neuronales, los diferentes métodos de aprendizaje y el estado actual de las redes
neuronales modernas.

• Capítulo 4: Algoritmos de multiplicación de matrices: se estudian ciertos al-
goritmos cuánticos de multiplicación de matrices, y se comparan con los algoritmos
actuales y se realiza un análisis de complejidad de los mismos. Se realiza también una
estimación temporal de los algoritmos en los modelos actuales de redes neuronales.

• Capítulo 5: Búsqueda de Grover: se estudia la integración de la búsqueda de Grover
en la inteligencia artificial. Se realiza un análisis completo de la búsqueda de Grover y
sus múltiples aplicaciones en la inteligencia artificial.

• Capítulo 6: Computación cuántica adiabática: se analiza la computación adiabá-
tica, un tipo de computación cuántica que utiliza otros principios distintos a la compu-
tación cuántica basada en puertas y circuitos. También se estudian las arquitecturas y
topologías D-Wave, una de las arquitecturas principales actuales en ordenadores adia-
báticos cuánticos.

• Capítulo 7: Conclusiones: resumen de las conclusiones de todo el trabajo, y pequeño
análisis de los problemas principales actuales que previenen la implementación de los
ordenadores cuánticos en proyectos comerciales.

2 Computación cuántica

Antes de ver como aplicar la computación cuántica a la inteligencia artificial, es necesario
introducir los conceptos necesarios para entender la computación cuántica. Empezaremos
por conocer los fundamentos físicos que nos permiten realizar cálculos utilizando la física
cuántica, y se irán viendo todas las estructuras algebraicas que se construyen a partir de esos
fundamentos físicos. Estas estructuras, como los bits cuánticos, las puertas lógicas cuánticas
o los circuitos cuánticos, nos proporcionan las abstracciones necesarias para poder razonar
sobre algoritmos cuánticos.

2.1 Fundamentos físicos de la computación cuántica

La computación cuántica utiliza la física cuántica como base para realizar cálculos lógicos.
A un tamaño suficientemente pequeño, la materia se comporta como ondas y partículas a la
vez [1]. Esto se conoce como la dualidad onda-partícula, y es uno de los principios básicos
de la física cuántica. A partir de esta dualidad, surgen muchos comportamientos interesantes
que los ordenadores cuánticos pueden aprovechar para mejorar significativamente el tiempo
requerido para realizar ciertos cálculos. Especialmente, se utilizan la superposición cuántica
[2] y el entrelazamiento cuántico [3].

El principio de superposición cuántica es la base fundamental para muchos de los algorit-
mos cuánticos que estudiaremos a lo largo de este trabajo. La superposición cuántica consiste
en que en los sistemas físicos cuánticos (ver apartado 2.1.1) se dan todas sus posibles confi-
guraciones a la vez, hasta que sean observados. Específicamente, para cada sistema cuántico
existen varios estados fundamentales, los posibles estados en los que puede estar el sistema
tras ser observado. El estado actual es una combinación lineal de estos estados fundamentales,
siendo la probabilidad de cada uno de los sistemas un factor en la combinación. La superpo-
sición y sus consecuencias para la computación cuántica se estudiarán con más detalle en el
apartado 2.2.

El otro principio que vamos a necesitar, el entrelazamiento cuántico, también es un pilar
importante de la computación cuántica. Este principio nos dice que podemos “entrelazar”
dos sistemas cuánticos, haciendo que las probabilidades de ambos estén relacionadas. Como
veremos en el apartado 2.2.4, esto nos permite generar probabilidades dependientes, de forma
que podemos realizar cálculos en ambos sistemas a la vez. Esto, teóricamente, nos proporciona
un speedup exponencial, ya que con cada sistema que entrelacemos multiplicamos la cantidad
de estados posibles.

Utilizando estos dos principios, y algunos otros que se explicarán durante el desarrollo del
presente trabajo, podemos realizar cálculos aprovechando las propiedades de la física cuántica
para mejorar el tiempo de ejecución y la eficiencia de muchos algoritmos.

3

4 Computación cuántica

2.1.1 Sistemas físicos de los ordenadores cuánticos

Para implementar los ordenadores cuánticos, a lo largo de los años se han utilizado una gran
variedad de sistemas físicos. La gran mayoría de estos sistemas físicos son sistemas binarios
(sistemas que tienen dos estados fundamentales, |0〉 y |1〉). A continuación se puede ver una
lista de algunas implementaciones físicas utilizadas en ordenadores cuánticos actuales:

Sistema Estado |0〉 Estado |1〉
Polarización de un fotón Polarización horizontal Polarización vertical

Número de fotones 0 fotones 1 fotón
Espín de un electrón Espín positivo Espín negativo

Espín de un núcleo atómico Espín positivo Espín negativo
Punto cuántico [4] Espín positivo Espín negativo

Sentido de una corriente Sentido horario Sentido anti-horario
Par de puntos cuánticos Electrón en punto izquierdo Electrón en punto derecho

Semiconductor de doble capa Electrón en capa inferior Electrón en capa superior

Tabla 2.1: Sistemas físicos en la computación cuántica. Fuente: [5]

Además de los sistemas de la tabla anterior, existen muchos otros sistemas físicos que se
utilizan actualmente. Muchos de ellos dependen de la arquitectura del procesador cuántico del
ordenador, por lo que enumerar todas las implementaciones consistiría en enumerar todas las
arquitecturas de ordenadores cuánticos. También existen sistemas cuánticos con más de dos
estados [6], que requieren un menor número de sistemas para representar la misma información
pero complican más cada uno de los sistemas.

Esta tabla solo representa los sistemas físicos para los ordenadores cuánticos basados en
puertas lógicas cuánticas (ver apartado 2.3). Como se estudiará en el capítulo 6, existen otros
tipos de ordenadores cuánticos que no siguen ese modelo de computación.

2.1.2 Notación bra-ket

Como consecuencia de que la computación cuántica esté basada en la física cuántica, hay
muchas convenciones y formalismos de la física cuántica que se han adoptado en la compu-
tación cuántica. Entre ellos, el más prominente es la notación bra-ket [7] (del inglés braket),
que se utiliza para describir los estados cuánticos y algunas de las operaciones básicas que se
pueden realizar sobre los mismos.

Esta notación está formada por dos partes, los bras 〈ϕ| y los kets |ψ〉. Cada ket representa
un estado cuántico, y cada bra representa un punto de referencia desde el que se observa el
sistema cuántico. Al combinar un bra 〈ϕ| con un ket |ψ〉 de la forma 〈ϕ|ψ〉, obtenemos la
amplitud de que el sistema pase del estado |ψ〉 al estado |ϕ〉 al ser observado. Las amplitudes,
junto con su relación con la probabilidad de cada estado, se estudian en más detalle en el
apartado 2.2.1.

2.1. Fundamentos físicos de la computación cuántica 5

2.1.2.1 Kets

Los sistemas cuánticos tienen estados fundamentales, a partir los cuales podemos construir
todos los posibles estados del sistema. Aunque normalmente estos estados fundamentales son
combinaciones de |0〉 y |1〉, en ciertos sistemas cuánticos podemos tener estados fundamentales
más complejos. Estos sistemas forman una base vectorial, por lo que a veces se les conoce
también como los estados base del sistema. Todos los posibles kets del sistema cuántico se
pueden definir a partir de los estados base. Si E0, E1, . . . son los estados base del sistema,
tendríamos la siguiente expresión para un ket, siendo αEi la amplitud del ket para la base Ei:

|ψ〉 = αE1E1 + αE2E2 + · · · =
∑
i

αEiEi (2.1)

Esto también se podría expresar utilizando el producto interior para obtener las amplitudes
del ket:

|ψ〉 = 〈E1|ψ〉E1 + 〈E1|ψ〉E2 + · · · =
∑
i

〈Ei|ψ〉Ei (2.2)

Si a partir de los estados base E1, E2, . . . definimos un espacio vectorial (que en nuestro caso
sería un espacio de Hilbert complejo [8]), podemos expresar los kets como vectores dentro de
ese espacio:

|ψ〉 = αE1E1 + αE2E2 + · · · =

αE1

αE2

. . .

 =

〈E1|ψ〉
〈E2|ψ〉
. . .

 (2.3)

2.1.2.2 Bras

Un bra es el vector que al multiplicarlo con cualquier ket es igual a la amplitud de ese bra y
ket. En otras palabras, multiplicar un bra y un ket es igual al producto interior:

〈ψ| |ϕ〉 = 〈ψ|ϕ〉 ∀ |ϕ〉 (2.4)

Podemos construir un bra a partir de su ket. El bra correspondiente a un ket se define como
el vector transpuesto conjugado del ket. Sea v̂† el transpuesto conjugado del vector v̂ y x∗ el
conjugado complejo del número x, tenemos la siguiente definición:

〈ψ| = |ψ〉† =

α1

α2

. . .

†

=
(
α∗
1 α

∗
2 . . .

)
(2.5)

Como los bras y kets son vectores, podemos aplicar operaciones vectoriales sobre ellos. Esto
incluye la suma y resta, el producto escalar y la multiplicación por valores escalares. Como
veremos más adelante, no todos los posibles kets y bras son estados cuánticos válidos, ya que
existen ciertas restricciones que limitan como podemos formar los estados.

De la notación bra-ket, utilizaremos el producto interior para extraer amplitudes de estados
cuánticos. Si tenemos un estado |ψ〉 =

∑
i αEi |Ei〉, podemos extraer cualquier αEi utilizando

el bra 〈Ei|:

6 Computación cuántica

αEi = 〈Ei|ψ〉 (2.6)

También podemos extraer combinaciones lineales de amplitudes de cualquier combinación
lineal de estados, aplicando las propiedades de los vectores:

(〈E1|+ 〈E2|)(|ψ1〉+ |ψ2〉) = 〈E1|ψ1〉+ 〈E1|ψ2〉+ 〈E2|ψ1〉+ 〈E2|ψ2〉 (2.7)

Utilizaremos la flexibilidad proporcionada por esta notación para simplificar algunos de los
desarrollos matemáticos en los siguientes apartados.

2.1.2.3 Sistemas compuestos

En muchos de los siguientes apartados tendremos que trabajar con sistemas compuestos de
otros sistemas. Para componer dos sistemas con los estados base E1, E2, . . . y F1, F2, . . .
utilizaremos el producto tensorial. Cada estado base del sistema compuesto se puede obtener
como un producto tensorial de dos estados bases |Ei〉 y |Fj〉:

|Ei, Fj〉 = |Ei〉 ⊗ |Fj〉 (2.8)

También se puede omitir la coma, dejándonos con |EiFj〉. Omitiremos la coma solo cuando
no cree ambigüedad. Por ejemplo, si tenemos dos sistemas binarios, cada uno con los estados
base |0〉 y |1〉, tendríamos los siguientes estados base en el sistema compuesto por los dos
sistemas:

|00〉 = |0, 0〉 = |0〉 ⊗ |0〉
|01〉 = |0, 1〉 = |0〉 ⊗ |1〉
|10〉 = |1, 0〉 = |1〉 ⊗ |0〉
|11〉 = |1, 1〉 = |1〉 ⊗ |1〉

(2.9)

2.2 Bits cuánticos
El bit es la unidad fundamental de información en los sistemas de computación clásicos. Un
bit es la cantidad de información mínima, un 0 o un 1, verdadero o falso. Normalmente, otros
tipos de datos más complejos se construyen a partir de bits. La computación cuántica tiene
un concepto análogo al bit, el cúbit (bit cuántico, del inglés quantum bit). Los bits cuánticos,
como los bits clásicos, pueden estar en uno de los dos estados base, |0〉 o |1〉. No obstante,
gracias al principio de superposición, los cúbits también pueden estar en una combinación de
los dos estados al mismo tiempo. Por ejemplo, el estado |+〉 se encuentra en el punto medio
entre |0〉 y |1〉, y se define matemáticamente con la siguiente expresión:

|+〉 = 1√
2
|0〉+ 1√

2
|1〉 = |0〉+ |1〉√

2
(2.10)

Como estamos trabajando con 1 cúbit, solo tenemos dos estados base, |0〉 y |1〉. Esto significa
que el cúbit puede estar en cualquier superposición de los dos estados base. Por lo tanto, un

2.2. Bits cuánticos 7

estado cualquiera |ψ〉 lo podríamos definir de la siguiente forma:

|ψ〉 = α0 |0〉+ α1 |1〉 (2.11)

En una superposición, el coeficiente de cada estado se conoce como la amplitud de ese estado.
Como las amplitudes de los estados son números complejos [9], α0 y α1 son números complejos
en la anterior ecuación (α0, α1 ∈ C). Esto significa que podemos definir estados utilizando
números complejos, como el estado |i〉, que también se encuentra en el punto medio entre |0〉
y |1〉:

|i〉 = 1√
2
|0〉+ i√

2
|1〉 = |0〉+ i |1〉√

2
(2.12)

Como ya hemos visto anteriormente, podemos utilizar la notación bra-ket para extraer las
amplitudes de un estado cuántico. No obstante, solo utilizaremos esa notación cuando no
hayamos definido previamente las amplitudes del estado. Si αx es la amplitud de |ψ〉 para
|x〉, tenemos la siguiente equivalencia.

αx = 〈x|ψ〉 (2.13)

2.2.1 Midiendo bits cuánticos

Aunque un cúbit tenga ciertos valores para las amplitudes α0 y α1, no es físicamente posi-
ble obtener esos valores de forma directa, ya que no son valores observables. Para obtener
información a cerca de un cúbit para el que no conocemos sus valores a priori, es necesario
observarlo. A la hora de observar un cúbit, se mide su estado, que hace que el estado del
cúbit colapse a uno de los estados base del sistema (|0〉 o |1〉 en el caso de 1 cúbit).

La probabilidad de que un cúbit colapse a cada uno de los estados depende del cuadrado
de la magnitud de la amplitud del estado. Un cúbit en estado α0 |0〉+ α1 |1〉 colapsará a los
estados |0〉 y |1〉 con las siguientes probabilidades:

P (|0〉) = |α0|2

P (|1〉) = |α1|2
(2.14)

Por ejemplo, si medimos el estado |+〉 que vimos anteriormente, tenemos |α0|2 = 0.5 y
|α1|2 = 0.5, por lo que el estado tiene un 50% de probabilidad de colapsar a |0〉 y 50% de
colapsar a |1〉. Como la probabilidad total del sistema siempre tiene que sumar 1, tenemos la
siguiente restricción para sistemas de 1 cúbit:

P (|0〉) + P (|1〉) = |α0|2 + |α1|2 = 1 (2.15)

Esta propiedad se conoce como la restricción de normalización, y también se aplica cuando
tenemos sistemas más complejos. Como la única manera que tenemos para obtener informa-
ción del sistema es medir su estado, no podemos conocer los valores exactos de α0 y α1. Tan
solo podemos conocer el resultado al que han colapsado. Esta es una propiedad fundamental
de los sistemas cuánticos, y veremos en algunos apartados ciertas técnicas que se utilizan

8 Computación cuántica

para mitigar esta limitación de los sistemas cuánticos y extraer el máximo de información
posible del sistema.

2.2.2 Fase global
La fase global del sistema cuántico es la fase común de todas las amplitudes del sistema. Por
ejemplo, un sistema con amplitudes eiθ/

√
2 tendría como fase θ. Normalmente, la fase global

de un sistema se define como la fase de la primera amplitud (α0 para sistemas de un cúbit),
de forma que la fase relativa de la primera amplitud siempre sea 0. A partir de aquí, podemos
calcular las fases relativas de cada una de las amplitudes del sistema quitando la fase global.
Siendo θ0 la fase de la primera amplitud, utilizando la fórmula de Euler [10] obtenemos las
siguientes amplitudes para un sistema de un cúbit:

α′
0 = α0e

−iθ0

α′
1 = α1e

−iθ0
(2.16)

Una propiedad muy interesante de los sistemas cuánticos es que la fase global del sistema
no afecta al resultado. En otras palabras, modificar la fase de todas las amplitudes de un
sistema no varía el resultado obtenido, siempre que se modifiquen todas las fases de igual
forma. Esta propiedad se utiliza para simplificar los cálculos en ciertas situaciones, y para
facilitar el razonamiento a cerca de los estados de los sistemas.

Por ejemplo, para sistemas de un cúbit, hay infinitos estados equivalentes al estado |0〉, ya
que eiγ |0〉 es exactamente el mismo estado pero variando la fase global por γ radianes. Todas
las transformaciones que se pueden realizar en este sistema de 1 cúbit producirán el mismo
resultado para |0〉 y para eiγ |0〉.

2.2.3 Esfera de Bloch
Para representar visualmente el estado de un cúbit, podemos utilizar la esfera de Bloch. Esta
es una visualización conveniente que nos ayudará a entender las operaciones que podemos
realizar en un cúbit. La esfera de Bloch representa un cúbit como un punto en una esfera de
radio 1 en R3.

Aparentemente, tenemos 4 grados de libertad para un cúbit en un estado α0 |0〉+α1 |1〉, ya
que α0 y α1 son números complejos con 2 grados de libertad cada uno. No obstante, podemos
quitar un grado de libertad aplicando la restricción de normalización |α0|2 + |α1|2 = 1.
Podemos eliminar otro grado de libertad quitando la fase del sistema, de forma que la fase
relativa de la primera amplitud sea 0. Siguiendo el desarrollo de [11], podemos expresar α0 y
α1 a partir de los parámetros θ y ϕ:

α0 = cos θ
2

α1 = eiϕ sin θ
2

(2.17)

Un estado |ψ〉 = α0 |0〉+ α1 |1〉, por lo tanto, se expresaría así a partir de θ y ϕ:

2.2. Bits cuánticos 9

|ψ〉 = cos θ
2
|0〉+ eiϕ sin θ

2
|1〉 (2.18)

Interpretando los parámetros θ y ϕ como los ángulos de un sistema de coordenadas esféricas
[12], obtenemos el siguiente vector en R3:

v⃗ =

sin θ cosϕ
sin θ sinϕ

cos θ

 (2.19)

Tras esto, podemos dibujar el vector resultante sobre una esfera de radio 1. Tras hacerlo, nos
queda la siguiente visualización del estado de un cúbit:

v⃗

x̂

−x̂

ŷ−ŷ

ẑ = |0⟩

−ẑ = |1⟩

θ

ϕ

Figura 2.1: Representación de un vector v⃗ en la esfera de Bloch. Fuente: elaboración propia

Los dos estados base |0〉 y |1〉 se encuentran en los polos norte y sur de la esfera, en los dos
extremos del eje z. En los extremos del eje x, nos encontramos los estados |+〉 y |−〉, que se
definen con la siguiente fórmula:

|+〉 = |0〉+ |1〉√
2

|−〉 = |0〉 − |1〉√
2

(2.20)

En los extremos de y se encuentran |−i〉 e |i〉, que se definen así:

|i〉 = |0〉+ i |1〉√
2

|−i〉 = |0〉 − i |1〉√
2

(2.21)

10 Computación cuántica

La esfera de Bloch es una representación es muy útil para visualizar 1 cúbit, ya que agrupa
todos los estados que tienen la misma fase global. De esta manera, al visualizar un estado o
una transformación en la esfera de Bloch, mantendremos sólo la información imprescindible
para la visualización, sin tener que preocuparnos de todos los estados equivalentes.

2.2.4 Múltiples cúbits
En la computación clásica, para 2 bits tenemos 4 estados posibles (00, 01, 10 y 11). Con
dos cúbits, obtenemos 4 estados base: |00〉, |01〉, |10〉 y |11〉. Para representar un estado de
un sistema de dos cúbits, necesitaremos asociar una amplitud a cada uno de los 4 estados
fundamentales. Por lo tanto, el sistema de dos cúbits puede tener un estado como el siguiente:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 (2.22)

Esto se puede generalizar fácilmente para n cúbits. Los estados base son todas las combinacio-
nes de 0 y 1 de n elementos ({0, 1}n), y por lo tanto necesitamos una amplitud αx para todo
x ∈ {0, 1}n. Para describir un estado cualquiera |ψ〉 en un sistema de n cúbits, tendríamos la
siguiente expresión:

|ψ〉 =
∑

x∈{0,1}n
αx |x〉 (2.23)

A la hora de medir estados en sistemas de múltiples cúbits, podemos medir cualquier cúbit
del sistema. Al medir, todos los cúbits entrelazados colapsarán a un estado fundamental. En
un sistema en el que todos los cúbits están entrelazados, la probabilidad de que el sistema
colapse al estado fundamental x ∈ {0, 1}n es la siguiente:

P (|x〉) = |αx|2 (2.24)

Como la suma de las probabilidades del sistema tiene que ser 1, tenemos la siguiente restric-
ción de normalización que para los sistema de varios cúbits:∑

x∈{0,1}n
P (|x〉) =

∑
x∈{0,1}n

|αx|2 = 1 (2.25)

2.2.4.1 Entrelazamiento de cúbits

En sistemas de varios cúbits, los cúbits se pueden entrelazar mediante varios tipos de interac-
ciones. Varios cúbits están entrelazados cuando están en un estado que no se puede expresar
como un producto de los estados de cada uno de los cúbits individuales. Por ejemplo, el estado
|Φ+〉, uno de los 4 estados de Bell [13], es un estado entrelazado:

∣∣Φ+
〉
=
|00〉+ |11〉√

2
(2.26)

Para ver si un estado está entrelazado o no, tenemos que ver si es posible descomponer
el estado de forma que tengamos amplitudes para cada cúbit. Si el primer cúbit está en el
estado |ψ0〉 = α0 |0〉+α1 |1〉 y el segundo en el estado |ψ1〉 = α′

0 |0〉+α′
1 |1〉, podemos expresar

cualquier estado no entrelazado de la siguiente forma:

2.2. Bits cuánticos 11

|ψ〉 = |ψ1〉 ⊗ |ψ2〉
= (α0 |0〉+ α1 |1〉)⊗ (α′

0 |0〉+ α′
1 |1〉)

= α0α
′
0 |00〉+ α0α

′
1 |01〉+ α1α

′
0 |10〉+ α1α

′
1 |11〉

(2.27)

Para verificar si un estado está entrelazado o no, simplemente tenemos que ver si existe
una combinación de valores de α0, α1, α′

0 y α′
1 que equivalga a las amplitudes del estado

que queremos comprobar. Por ejemplo, para comprobar que |Φ+〉 está entrelazado, podemos
realizar el siguiente desarrollo:

〈
00
∣∣Φ+

〉
= α0α

′
0 = 1/

√
2 =⇒ α0 6= 0 ∧ α′

0 6= 0〈
01
∣∣Φ+

〉
= α0α

′
1 = 0 =⇒ α0 = 0 ∨ α′

1 = 0〈
10
∣∣Φ+

〉
= α1α

′
0 = 0 =⇒ α1 = 0 ∨ α′

0 = 0〈
11
∣∣Φ+

〉
= α1α

′
1 = 1/

√
2 =⇒ α1 6= 0 ∧ α′

1 6= 0

(2.28)

Como podemos ver en el desarrollo anterior, las ecuaciones son contradictorias, ya dos de
ellas dicen que ninguna amplitud puede ser 0 y las otras dos requieren que al menos dos de
las amplitudes sean 0. Como hay una contradicción, podemos concluir que |Φ+〉 es un estado
entrelazado, ya que no se puede expresar como un producto de estados de los cúbits. Todo
este proceso también se puede generalizar para n cúbits, aunque el desarrollo se vuelve mucho
más complejo.

Existen 4 estados de Bell, todos de ellos entrelazados. Estos estados se utilizan frecuen-
temente en los algoritmos cuánticos, ya que a partir de ellos se puede llegar a estados con
propiedades muy útiles.

∣∣Φ+
〉
=
|00〉+ |11〉√

2∣∣Φ−〉 = |00〉 − |11〉√
2∣∣Ψ+

〉
=
|01〉+ |10〉√

2∣∣Ψ−〉 = |01〉 − |10〉√
2

(2.29)

Medir un cúbit de un estado entrelazado colapsa todos los cúbits que estaban entrelazados
en ese estado. Esto ocurre de forma instantánea, incluso si los cúbits se encuentran a mucha
distancia [14].

2.2.5 Notación vectorial

Para facilitar la representación de operaciones sobre cúbits, representaremos el estado de un
sistema de uno o más cúbits como un vector de amplitudes, ordenado de la siguiente manera:

12 Computación cuántica

α0 |0〉+ α1 |1〉 =
(
α0

α1

)
(2.30)

Como muchas de las operaciones básicas que podemos aplicar sobre cúbits son lineares,
esto nos permitirá expresar esas operaciones como matrices. A continuación se puede ver la
notación para las superposiciones de 2 cúbits:

α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 =


α00

α01

α10

α11

 (2.31)

Para casos con más de dos cúbits, las amplitudes del estado estarán en el mismo orden,
siendo la primera amplitud la correspondiente al estado de sólo ceros (|0 . . . 0〉) y la última la
correspondiente al estado de sólo unos (|1 . . . 1〉):

∑
x∈{0,1}n

αx |x〉 =


α0...0

α0...1

. . .
α1...0

α1...1

 (2.32)

2.3 Puertas lógicas cuánticas
En la computación clásica, las operaciones fundamentales que podemos realizar sobre bits son
las puertas lógicas. De igual manera, las operaciones básicas que podemos aplicar a los cúbits
son las puertas lógicas cuánticas. Como los cúbits son más complejos que los bits clásicos,
muchas de estas puertas también son más complicadas que las puertas lógicas clásicas.

Para representar las operaciones que veremos a continuación, utilizaremos matrices. Repre-
sentaremos cada puerta como una matriz cuadrada, que al multiplicar un vector de amplitudes
produzca el vector de amplitudes resultante tras aplicar la puerta. Por ejemplo, la siguiente
matriz representa la puerta identidad, que deja un cúbit con las mismos amplitudes:

I =
(
1 0
0 1

)
(2.33)

Para mantener la restricción de normalización, todas las operaciones que se pueden realizar
sobre cúbits tienen que ser matrices unitarias. Una matriz U es una matriz unitaria si y solo
si su inversa es igual a su transpuesta conjugada. En otras palabras, tiene que cumplir la
siguiente restricción:

UU† = U†U = I (2.34)

Como cada cúbit está formado por dos números complejos, las puertas cuánticas de 1 cúbit
serán necesariamente matrices 2 × 2 de números complejos. Para puertas de n cúbits, ten-
dremos matrices de 2n × 2n. Como todas las matrices unitarias tienen una matriz inversa,
significa que cualquier puerta lógica cuántica es reversible, y que por lo tanto cualquier ope-

2.3. Puertas lógicas cuánticas 13

ración que realicemos sobre un sistema cuántico se puede deshacer. La única excepción es
medir el estado del sistema, que es una operación irreversible.

A continuación, comentaremos las puertas lógicas cuánticas más habituales, junto con sus
propiedades y usos.

2.3.1 Puertas de Pauli

Las puertas de Pauli (las puertas X, Y y Z) son tres puertas que actúan sobre un único cúbit.
Estas puertas corresponden a una rotación alrededor de los ejes x, y y z por π radianes
(180 grados) en la esfera de Bloch. Como la puerta X rota alrededor del eje x, realizará las
transformaciones |0〉 7→ |1〉 y |1〉 7→ |0〉 en la esfera de Bloch:

|+⟩

|−⟩

|i⟩|−i⟩

|0⟩

|1⟩

Figura 2.2: Puerta X en la esfera de Bloch. Fuente: elaboración propia

Como esta puerta “invierte” el bit del cúbit también se conoce como la puerta NOT cuántica.
Además, realiza |i〉 7→ |−i〉 y |−i〉 7→ |i〉 en la esfera de Bloch, dejando |+〉 y |−〉 sin modificar.
La representación matricial de la puerta X es la siguiente:

X =

(
0 1
1 0

)
(2.35)

La puerta Y es como la X, solo que intercambia |0〉 con |1〉 y |+〉 con |−〉, y deja |i〉 y |−i〉
sin modificar en la esfera de Bloch.

14 Computación cuántica

|+⟩

|−⟩

|i⟩|−i⟩

|0⟩

|1⟩

Figura 2.3: Puerta Y en la esfera de Bloch. Fuente: elaboración propia

La representación matricial de la puerta Y es la siguiente:

Y =

(
0 −i
i 0

)
(2.36)

Cabe destacar que la puerta Y , a diferencia de la puerta X, introduce fase al sistema. Con-
cretamente, como hace las transformaciones |0〉 7→ −i |−1〉 y |−1〉 7→ i |0〉, introduce fases i
y −i. Esto significa que para sistemas de múltiples cúbits tendremos que tener esta fase en
cuenta a la hora de operar utilizando esta puerta.

La puerta Z no modifica |0〉 y |1〉, e intercambia |+〉 con |−〉 y |i〉 con |−i〉:

|+⟩

|−⟩

|i⟩|−i⟩

|0⟩

|1⟩

Figura 2.4: Puerta Z en la esfera de Bloch. Fuente: elaboración propia

La puerta Z corresponde con la siguiente matriz:

Z =

(
1 0
0 −1

)
(2.37)

Como se puede ver en la matriz, la puerta Z también introduce fase, ya que hace |1〉 7→ − |1〉.
Como las 3 puertas son rotaciones de 180 grados, son involutivas, por lo que tenemos X2 =
Y 2 = Z2 = I. A continuación se pueden ver los resultados exactos (con fase) de aplicar las 3
puertas a los 6 estados principales de la esfera de Bloch:

2.3. Puertas lógicas cuánticas 15

|ψ〉 X |ψ〉 Y |ψ〉 Z |ψ〉
|0〉 |1〉 i |1〉 |0〉
|1〉 |0〉 −i |0〉 − |1〉
|−〉 − |−〉 i |+〉 |+〉
|+〉 |+〉 −i |−〉 |−〉
|−i〉 i |i〉 − |−i〉 |i〉
|i〉 |−i〉 |i〉 |−i〉

Tabla 2.2: Efectos de las puertas X, Y y Z. Fuente: elaboración propia

2.3.2 Puerta Hadamard

La puerta Hadamard es otra de las puertas fundamentales cuánticas. Esta puerta, al igual
que las puertas de Pauli, equivale a una rotación de π radianes en la esfera de Bloch. No
obstante, esta puerta realiza la rotación a través de un eje situado a 45 grados entre el eje x
y el eje z (el eje (x̂+ ẑ)/

√
2). La visualización en la esfera de Bloch de esta puerta se puede

ver a continuación:

|+⟩

|−⟩

|i⟩|−i⟩

|0⟩

|1⟩

|0⟩

|1⟩

−ĥ

ĥ

Figura 2.5: Puerta H en la esfera de Bloch. Fuente: elaboración propia

Como se puede ver, esta puerta intercambia los estados |0〉 y |1〉 con los estados |+〉 y |−〉.
Los estados |i〉 y |−i〉 se intercambian entre ellos. La matriz que define a la puerta Hadamard
es la siguiente:

H =
1√
2

(
1 1
1 −1

)
(2.38)

La puerta, como representa una rotación de π radianes, es involutiva (H 2 = I). Sobre un
cúbit realiza la transformación (α0, α1) 7→ (α0 + α1, α0 − α1)/

√
2. Los efectos que tiene la

puerta sobre los 6 estados principales de la esfera de Bloch son los siguientes:

16 Computación cuántica

|ψ〉 H |ψ〉
|0〉 |+〉
|1〉 |−〉
|−〉 |1〉
|+〉 |0〉
|−i〉 (1− i) |i〉
|i〉 (1 + i) |−i〉

Tabla 2.3: Efectos de la puerta H. Fuente: elaboración propia

Como se puede ver, esta puerta intercambia los estados |0〉 y |1〉 por los estados |+〉 y |−〉 sin
introducir fase, por lo que se dice que cambia la base del sistema de {|0〉 , |1〉} a {|+〉 , |−〉}.
La base {|+〉 , |−〉} se conoce como la base de Hadamard.

2.3.2.1 Puertas de cambio de base

Generalizando un poco más lo visto con la puerta Hadamard, se pueden definir las puertas
de cambio de base. Esta es una familia de puertas cuánticas que cambia la base del sistema.
B(|ϕ〉 , |ψ〉) es la puerta que cambia la base de {|0〉 , |1〉} a {|ϕ〉 , |ψ〉}, y se puede definir de la
siguiente forma:

B(|ϕ〉 , |ψ〉) =
(
〈0|ϕ〉 〈1|ϕ〉
〈0|ψ〉 〈1|ψ〉

)
(2.39)

Esta puerta es una puerta cuántica válida si y solo si |ϕ〉 y |ψ〉 son estados cuánticos válidos
y son vectores linealmente independientes [15]. Este tipo de base se puede generalizar para n
cúbits con la siguiente matriz 2n × 2n:

B(|ψ1〉 , . . . , |ψn〉) =

〈0 . . . 0|ψ1〉 . . . 〈1 . . . 1|ψ1〉
...

〈0 . . . 0|ψn〉 . . . 〈1 . . . 1|ψn〉

 (2.40)

Utilizando esta notación, podríamos definir la puerta H como B(|+〉 , |−〉). Otra base muy
importante es la base de Bell {Φ+,Ψ+,Φ−,Ψ−}, cuya puerta de cambio de base es la siguiente:

Bell = B(Φ+,Φ−,Ψ+,Ψ−) =


〈00|Φ+〉 〈01|Φ+〉 〈10|Φ+〉 〈11|Φ+〉
〈00|Ψ+〉 〈01|Ψ+〉 〈10|Ψ+〉 〈11|Ψ+〉
〈00|Φ−〉 〈01|Φ−〉 〈10|Φ−〉 〈11|Φ−〉
〈00|Ψ−〉 〈01|Ψ−〉 〈10|Ψ−〉 〈11|Ψ−〉



=
1√
2


1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0


(2.41)

2.3. Puertas lógicas cuánticas 17

2.3.3 Puertas de desplazamiento de fase

Las puertas de desplazamiento de fase son una familia de puertas cuánticas que alteran la fase
del cúbit al que se aplican, realizando (α0, α1) 7→ (α0, e

iφα1). Las puertas de desplazamiento
de fase se describen con la siguiente matriz, donde φ es el desplazamiento de la puerta:

P (φ) =

(
1 0
0 eiφ

)
(2.42)

Este tipo de puertas equivalen también a una rotación de φ radianes en la esfera de Bloch
alrededor del eje z. Las puertas de desplazamiento de fase más utilizadas son la puerta T,
donde φ = π/4; la puerta S, donde φ = π/2; y la puerta de Pauli Z, donde φ = π.

T = P
(π
4

)
=

(
1 0

0 ei
π
4

)
S = P

(π
2

)
=

(
1 0

0 ei
π
2

)
=

(
1 0
0 i

)
Z = P (π) =

(
1 0
0 eiπ

)
=

(
1 0
0 −1

) (2.43)

Los efectos de estas puertas sobre los estados principales de la esfera de Bloch se pueden ver
a continuación:

|ψ〉 T |ψ〉 S |ψ〉 P(φ) |ψ〉
|0〉 |0〉 |0〉 |0〉
|1〉 eiπ/4 |1〉 i |1〉 eiφ |1〉
|−〉 (1,−eiπ/4)/

√
2 |−i〉 (1, eiφ)/

√
2

|+〉 (1, eiπ/4)/
√
2 |i〉 (1, eiφ)/

√
2

|−i〉 (1,−ieiπ/4)/
√
2 |+〉 (1,−ieiφ)/

√
2

|i〉 (1, ieiπ/4)/
√
2 |−〉 (1, ieiφ)/

√
2

Tabla 2.4: Efectos de las puertas de desplazamiento de fase. Fuente: elaboración propia

2.3.4 Puerta SWAP

La puerta SWAP es una puerta que opera sobre dos cúbits. La puerta intercambia los valores
de los cúbits. Si un cúbit es |0〉 y el otro es |1〉, se invertirán los valores. Como la puerta
opera en varios cúbits, no la podemos representar mediante la esfera de Bloch. La matriz que
representa esta puerta es la siguiente:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.44)

18 Computación cuántica

Si vemos como afecta a los 4 estados base para sistemas de 2 cúbits, tenemos la siguiente
tabla:

|ψ〉 SWAP |ψ〉
|00〉 |00〉
|01〉 |10〉
|10〉 |01〉
|11〉 |11〉

Tabla 2.5: Efectos de la puerta SWAP. Fuente: elaboración propia

Como se puede ver en la tabla la puerta intercambia los valores del primer y del segundo
cúbit, respecto a los estados |0〉 y |1〉. Cabe destacar que la puerta es simétrica respecto
al primer y segundo cúbit, lo que implica que el efecto sobre cada uno de los cúbits es el
mismo incluso si los intercambiamos entre sí. La puerta SWAP también es involutiva, ya que
SWAP 2 = I.

2.3.5 Puertas controladas
Las puertas controladas son una familia de puertas cuánticas que actúan en dos o más cúbits,
donde algunos de los cúbits controlan si la operación se realiza o no. Por ejemplo, la puerta
CX (o CNOT) es la versión controlada de la puerta de Pauli X. Si el primer cúbit está en
|1〉, aplicará la puerta X al segundo cúbit. Si está en |0〉, el segundo cúbit se quedará sin
modificar. Básicamente, realiza la siguiente transformación de estados:

|ψ〉 CX |ψ〉
|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

Tabla 2.6: Efectos de la puerta CX. Fuente: elaboración propia

Esto se puede describir matemáticamente con la transformación CX |a, b〉 7→ |a, a⊕ b〉, siendo
⊕ la puerta XOR. Es por esto que a veces se conoce esta puerta como la XOR cuántica. La
representación matricial de la puerta CX es la siguiente:

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.45)

Como se puede ver, la matriz contiene la puerta de Pauli X en la esquina abajo derecha. Esto
no es casualidad, ya que es como se construyen de manera general las puertas controladas.
Si tenemos una puerta cualquiera de 1 cúbit U, entonces la versión controlada de la puerta

2.3. Puertas lógicas cuánticas 19

U sería la siguiente matriz:

CU =


1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11

 (2.46)

Esta puerta CU aplicará la puerta U solo cuando el primer cúbit esté en el estado |1〉, y no
la aplicará cuando está en |0〉. La puerta CU realiza la siguiente transformación:

|ψ〉 CU |ψ〉
|00〉 |00〉
|01〉 |01〉
|10〉 |1〉 ⊗ U |0〉
|11〉 |1〉 ⊗ U |1〉

Tabla 2.7: Efectos de la puerta CU. Fuente: elaboración propia

Este proceso se puede aplicar para cualquier puerta U de 1 cúbit. También se puede construir
de forma similar matrices con más de 1 cúbits de control. Por ejemplo, podríamos definir la
puerta CCU como una puerta doble-controlada, que requiere que dos bits de control en vez
de uno para realizar la puerta U. Esta puerta se definiría de la siguiente manera:

CCU =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 u00 u01
0 0 0 0 0 0 u10 u11


(2.47)

De forma similar, también podemos generalizar la construcción de una puerta controlada
para una puerta con cualquier número de cúbits. Sea W la matriz de una puerta de n cúbits,
y I la puerta identidad de n cúbits, obtendríamos la siguiente matriz para la puerta CW , que
sería una puerta de n+ 1 cúbits:

CW =

(
I 0
0 W

)
(2.48)

Para denotar una puerta U-controlada con n bits de control, utilizaremos la notación CnU .

2.3.5.1 Puerta Toffoli

Una de las puertas controladas más utilizadas es la puerta Toffoli. La puerta Toffoli, el la
puerta de Pauli X doble controlada. La matriz que la define es la siguiente:

20 Computación cuántica

CCX =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(2.49)

Como hemos añadido dos controles a una puerta de un cúbit, esta puerta es de 3 cúbits. En
la tabla 2.8 se puede ver los efectos de esta puerta sobre los estados base para sistemas de 3
cúbits.

|ψ〉 CCX |ψ〉
|000〉 |000〉
|001〉 |001〉
|010〉 |010〉
|011〉 |011〉
|100〉 |100〉
|101〉 |101〉
|110〉 |111〉
|111〉 |110〉

Tabla 2.8: Efectos de la puerta Toffoli. Fuente: elaboración propia

Esta puerta se utiliza normalmente para implementar ciertas puertas de lógica clásica, ya que
no se pueden implementar de forma directa con ordenadores cuánticos [16].

2.3.5.2 Puerta CZ

Otra puerta controlada muy utilizada es la puerta CZ, la puerta controlada de la puerta Pauli
Z. Su matriz es la siguiente:

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.50)

Sus efectos se pueden ver a continuación:

2.3. Puertas lógicas cuánticas 21

|ψ〉 CZ |ψ〉
|00〉 |00〉
|01〉 |01〉
|10〉 |10〉
|11〉 |1,−1〉

Tabla 2.9: Efectos de la puerta CZ. Fuente: elaboración propia

2.3.5.3 Puertas de desplazamiento de fase controladas

De forma similar a la puerta CZ, también se pueden generar versiones controladas de las
otras puertas de desplazamiento de fase:

CP(φ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

 (2.51)

A partir de CP(φ), podemos construir las puertas CT y CS:

CT = CP(π
4
) =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 ei
π
4



CS = CP(π
2
) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i


(2.52)

Los efectos de estas puertas son los siguientes:

|ψ〉 CT |ψ〉 CS |ψ〉 CP(φ) |ψ〉
|00〉 |00〉 |00〉 |00〉
|01〉 |01〉 |01〉 |01〉
|10〉 |10〉 |10〉 |10〉
|11〉 |1, i〉

∣∣1, eiπ/4〉 ∣∣1, eiφ〉
Tabla 2.10: Efectos de las puertas de desplazamiento de fase controladas. Fuente: elaboración propia

2.3.5.4 Puerta CSWAP

La puerta CSWAP es la puerta SWAP, pero con un cúbit de control. Esta puerta solo
intercambia el valor de los dos últimos cúbits si el cúbit de control vale |1〉. Se define con la
siguiente matriz:

22 Computación cuántica

CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


(2.53)

Esta puerta se utiliza principalmente para estimar el producto interior entre dos vectores
cuánticos. Este tipo de estimación se conoce como swap test, y es la base de muchos algoritmos
cuánticos que trabajan sobre vectores o matrices. En el apartado 4.2.1, podemos ver como se
puede utilizar este tipo de estimaciones para construir un algoritmo cuántico de multiplicación
de matrices.

Los efectos de esta puerta sobre un sistema de 3 cúbits se pueden ver en la tabla 2.11.

|ψ〉 CSWAP |ψ〉
|000〉 |000〉
|001〉 |001〉
|010〉 |010〉
|011〉 |011〉
|100〉 |100〉
|101〉 |110〉
|110〉 |101〉
|111〉 |111〉

Tabla 2.11: Efectos de la puerta CSWAP. Fuente: elaboración propia

2.3.6 Puertas compuestas

Las puertas cuánticas también se pueden componer a partir de otras puertas cuánticas. Co-
mo los efectos de las puertas se pueden representar con matrices, utilizando operaciones
matriciales podemos formar puertas nuevas a partir de otras.

2.3.6.1 Puertas con exponentes

La forma mas sencilla de formar puertas cuánticas compuestas es poner múltiples puertas
cuánticas en serie. Por ejemplo, podríamos formar una puerta U que aplique los efectos de
dos puertas U1 y U2 utilizando la multiplicación de matrices:

U = U2 U1 (2.54)

Como son matrices, para que se aplique primero la puerta U1 y después la U2 tendremos que
ponerlas de derecha a izquierda. Esto se puede generalizar fácilmente para cualquier número
de puertas. Si tenemos las puertas U1 . . . Un, la puerta que equivale a aplicar U1, luego U2 y

2.3. Puertas lógicas cuánticas 23

así hasta aplicar Un es la siguiente:

U =

n∏
i=1

Un+1−i (2.55)

Utilizando esta misma fórmula, podemos encontrar también el resultado de aplicar una puerta
múltiples veces, Un. La potencia de esta fórmula es que, como las puertas cuánticas válidas
son matrices de números complejos, para que Un sea una puerta válida n puede ser cualquier
número complejo. Esto es especialmente útil para realizar puertas con exponentes fraccionales.
Por ejemplo, la puerta

√
X = X1/2 es una puerta que, tras aplicarla dos veces, realiza los

mismos efectos que la puerta X. La representación matricial de la puerta se puede obtener
utilizando álgebra matricial de forma sencilla:

√
X =

√(
0 1
1 0

)
=

1 + i

2

(
1 −i
−i 1

)
(2.56)

Otras puertas con exponentes fraccionales muy utilizadas son las puertas
√
Y y
√
H:

√
Y =

√(
0 −i
−i 0

)
=

1 + i

2

(
1 −1
1 1

)
√
H =

√
1√
2

(
1 1
1 −1

)
=

1− i
4

(√
2 + 2i

√
2√

2 −
√
2 + 2i

) (2.57)

2.3.6.2 Puertas en paralelo

Otro tipo de puerta compuesta muy útil son las puertas paralelas, que aplican los efectos de
puertas en paralelo a varios cúbits. Las puertas paralelas se pueden construir utilizando el
producto tensorial. Por ejemplo, si quisiéramos aplicar la puerta X y Z en paralelo (una a
cada cúbit), tendríamos la siguiente puerta:

X ⊗ Z =

(
0 1
1 0

)
⊗
(
1 0
0 −1

)
=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 (2.58)

La puerta X⊗Z es una puerta de dos cúbits, y sus efectos son equivalentes a los de aplicar la
puerta X al primer cúbit y la puerta Z al segundo. Esto se puede generalizar para cualquier
número de puertas, de forma que para aplicar las puertas U1 . . . Un en paralelo a n cúbits de
forma de que la puerta Ui se aplique al cúbit i nos quedaría la siguiente puerta:

U =
n⊗

i=1

Un (2.59)

Si cada puerta Ui es una puerta de ni cúbits, entonces la puerta paralela U será una puerta
de
∑
ni cúbits. Para construir una puerta que aplique la misma puerta U en paralelo a n

cúbits, utilizaríamos la siguiente fórmula:

24 Computación cuántica

U⊗n =
n⊗
1

U = U ⊗ U ⊗ · · · ⊗ U︸ ︷︷ ︸
n veces

(2.60)

La puerta paralela más útil que sigue este patrón es la transformada de Hadamard, una
puerta que aplica la puerta H en paralelo a n cúbits. Por ejemplo, la versión de dos cúbits
es la siguiente:

H⊗2 = H ⊗H =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (2.61)

Las familia de puertas H⊗n normalmente se utiliza para inicializar estados cuánticos, ya que
tras aplicarla a un estados formado por n cúbits inicializados en |0〉, deja el sistema en una
superposición en la que todos los posibles estados tienen la misma amplitud, 1/

√
2n:

H⊗n |0n〉 = 1√
2n

∑
x∈{0,1}n

|x〉 (2.62)

2.4 Circuitos cuánticos

Cuando tenemos muchas puertas cuánticas en el mismo algoritmo, representarlas con la no-
tación matricial o la notación bra-ket se vuelve muy tedioso, especialmente cuando estamos
trabajando con puertas que operan sobre muchos cúbits. Para intentar mitigar esto, existe
una notación que representa un algoritmo cuántico como un circuito de puertas cuánticas.

2.4.1 Cables cuánticos

En un circuito cuántico, cada cúbit se representa con un cable. Si queremos representar un
múltiples cúbits con un cable, especificaremos la cantidad de cúbits del cable con una pequeña
línea diagonal. Además, a la izquierda del cable pondremos el valor inicial en el que empieza
el cable, ya sea un valor constante (|0〉, |1〉, etc.) o una variable (|ϕ〉, |ψ〉, etc).

3

n

|0⟩

|010⟩

|ψi⟩

Figura 2.6: Circuito cuántico con tres cables de 1, 3 y n cúbits. Fuente: elaboración propia

En algunas ocasiones también es necesario representar bits clásicos en diagramas de circuitos
cuánticos. Para esto existe un tipo de cable para bits clásicos. Los cables de bits se representan
con dos líneas, mientras que los cables de cúbits se representan con una línea:

2.4. Circuitos cuánticos 25

2

4

|ϕ, ψ⟩

|0110⟩

Figura 2.7: Circuito con un cable de cúbits (arriba) y de bits (abajo). Fuente: elaboración propia

2.4.2 Puertas en circuitos cuánticos

Para aplicar puertas lógicas a los cúbits de un cable, pondremos el nombre de la puerta dentro
de un rectángulo que intersecte al cable que afecta. Si la puerta afecta a los cúbits de varios
cables, haremos que el rectángulo intersecte a todos los cables que afecte:

n

|ϕ⟩ H

Y ⊗n+1

U

|ψ⟩ Z⊗n

Figura 2.8: Circuito cuántico con varias puertas lógicas. Fuente: elaboración propia

Podemos tener puertas en serie poniendo varias puertas en el mismo cable, y puertas en
paralelo poniendo cada puerta en cables diferentes. Para puertas controladas, se utiliza un
punto negro para indicar el bit (o bits) de control, y el cuadrado con el nombre de la puerta
para indicar la puerta en sí:

|ψ1⟩ S

|ψ2⟩ Y
Bell

|ψ3⟩ H

Figura 2.9: Circuito cuántico con las puertas CY , CCH, CS y CBell. Fuente: elaboración propia

La gran mayoría de puertas se representan utilizando el rectángulo junto con el nombre de
la puerta. No obstante, existen algunas excepciones importantes.

2.4.2.1 Puertas X, CX y Toffoli

La puerta X en circuitos cuánticos se representa utilizando el símbolo ⊕. Como las puertas
CX y Toffoli derivan de la puerta X, su representación en circuitos cuánticos también utiliza
el símbolo ⊕, al igual que el resto de las puertas CnX.

26 Computación cuántica

|ψ1⟩

|ψ2⟩

|ψ3⟩

Figura 2.10: Circuito con X (izquierda), CX (centro) y Toffoli (derecha). Fuente: elaboración propia

2.4.2.2 Puerta CZ

La puerta CZ, a diferencia de la puerta de Pauli Z, se representa utilizando dos puntos:

|ϕ⟩

|ψ⟩

Figura 2.11: Circuito cuántico con una puerta CZ. Fuente: elaboración propia

Con esta notación, es ambiguo cuál de los dos cúbits es el control, y cuál es el cúbit afectado
por la puerta. No obstante, como la puerta CZ produce los mismos efectos sin importar el
orden de los cúbits, no importa esta ambigüedad. Esto también ocurre cuando se controla la
puerta Z con más cúbits, como en la familia de puertas CnZ.

2.4.2.3 Puertas SWAP y CSWAP

La puerta SWAP se representa con una línea que une dos símbolos ×, uno en cada cúbit que
intercambia. La puerta CSWAP utiliza la misma notación, pero con un punto indicando el
cúbit de control:

|ψ1⟩

|ψ2⟩

|ψ3⟩

Figura 2.12: Circuito con SWAP (izquierda) y CSWAP (derecha). Fuente: elaboración propia

2.4.3 Medidores
Para obtener el resultado de los cables, necesitaremos medir los cúbits de los cables. Para
medir un cable, se utiliza una “puerta” especial que representa el medidor. Para reflejar que
los cúbits de un cable han sido medidos, cambiaremos el tipo de cable de cúbit a bit clásico,

2.4. Circuitos cuánticos 27

ya que el resultado de medir cúbits es uno de los estados base, que se puede representar
utilizando bits clásicos:

|ψ⟩ H Z

Figura 2.13: Circuito cuántico con un medidor. Fuente: elaboración propia

Estos bits clásicos, aunque normalmente solo se utilizan para almacenar el resultado del
circuito, a veces se pueden utilizar para controlar si ciertas puertas posteriores se ejecutan
o no, o cuántas veces se ejecuta una puerta. Esto se conoce como un control clásico, y se
representa en circuitos cuánticos de forma similar a las puertas controladas, pero con el cúbit
de control en un cable de bits:

|ϕ⟩

|ψ⟩ H H

Figura 2.14: Circuito con CH, un medidor y H con control clásico. Fuente: elaboración propia

Este tipo de control no se suele utilizar, ya que tienen exactamente el mismo efecto que
utilizar una puerta controlada antes de medir el cúbit. Por ejemplo, las dos puertas H de la
figura 2.14 tienen un efecto idéntico sobre los dos cúbits. Esto lo sabemos gracias al principio
de la medida diferida (Deferred Measurement Principle) [17].

3 Inteligencia artificial

En el campo de la inteligencia artificial se utilizan técnicas y arquitecturas para la resolución
de problemas tan complejos que desarrollar un programa tradicional para resolverlos es invia-
ble. Entre estos problemas se incluye la traducción de lenguaje natural, el reconocimiento de
imágenes y vídeo, y la detección de patrones y/o semejanzas. Mediante ciertos mecanismos
que veremos más adelante, es posible entrenar estas redes para que aprendan ciertos patro-
nes. Hay varios tipos de aprendizaje que se pueden utilizar a la hora de entrenar modelos de
inteligencia artificial:

• Aprendizaje supervisado: consiste en proveer a la red de muchos ejemplos etiquetados.
A partir de estos ejemplos, la red es capaz de ir disminuyendo su error respecto a los
ejemplos, y ir prediciendo mejor el conjunto de datos del que se extrajeron los ejemplos.
Como para generar modelos muy precisos o complejos se requieren muchos datos, se
requiere mucho tiempo de entrenamiento para que el modelo aprenda de todos los
ejemplos. Si no se proveen de suficientes datos, o los datos no son de suficientemente
buena calidad, se pueden obtener resultados subóptimos [18].

• Aprendizaje no supervisado: en el aprendizaje no supervisado, el modelo de machine
learning extrae patrones de datos no etiquetados, mediante el descubrimiento de pa-
trones o semejanzas en los datos. Aunque no requiera tantos datos como el aprendizaje
supervisado, extraer información útil del modelo no es tan sencillo, ya que las categorías
o asociaciones producidas son opacas [19]. También es posible que el modelo encuen-
tre patrones que carezcan de relevancia real a la hora de aplicarlos al análisis que se
pretendía hacer.

• Aprendizaje por refuerzo: el modelo aprende mediante la interacción con su entorno,
y es recompensado o penalizado dependiendo en lo que haga. Estos algoritmos son
específicos a un problema en concreto, pero permiten la optimización de tareas muy
complicadas con la programación de unas heurísticas de recompensa/penalización rela-
tivamente simples. El modelo, mediante prueba y error, va aprendiendo poco a poco el
entorno en el que está interactuando, y poco a poco va afinándose a las características
de la función de recompensa y penalización [20].

La gran mayoría de arquitecturas de inteligencia artificial actuales están basadas en redes
neuronales. Estas redes son conjuntos de neuronas artificiales, que son nodos que calculan un
valor a partir de sus conexiones con otras neuronas artificiales. Este tipo de arquitecturas están
inspirados en las redes neuronales biológicas encontradas en los cerebros y sus conexiones
neuronales. Primero estudiaremos la estructura de una neurona artificial individual, y luego
estudiaremos las redes neuronales en sí.

29

30 Inteligencia artificial

3.1 Neuronas artificiales

En machine learning, una neurona es un nodo de una red neuronal. Cada neurona recibe
ciertas entradas y produce una única salida, su valor de activación. La neurona calcula este
valor a partir de las entradas recibidas, multiplicando cada entrada por su peso correspon-
diente. También se le suma a la activación un valor fijo llamado bias. El resultado se pasa
por la función de activación, que a partir del resultado de las sumas produce la salida de la
neurona. Sea σ la función de activación, x las entradas, w los pesos y b el bias, la salida de
una neurona se calcula utilizando la siguiente fórmula:

y = σ

(
b+

n∑
i=1

wixi

)
(3.1)

Para simplificar la expresión anterior, normalmente se añade una “entrada” x0 cuyo valor es
siempre 1, y se utiliza w0 como bias:

y = σ

(
n∑

i=0

wixi

)
(3.2)

Podemos representar visualmente la ecuación anterior de la siguiente forma:

1

x1

x2

x3

∑
y

w0

w1

w2

w3

σ

Figura 3.1: Visualización de una neurona con 3 entradas. Fuente: elaboración propia

Existen muchas funciones de activación, teniendo cada una sus usos. La gran mayoría son
funciones no lineales, que se utilizan para hacer que la salida de las neuronas deje de tener
una relación lineal con las entradas. Algunas de las funciones de activación más utilizadas
son las siguientes:

• Lineal: σ(x) = x.

• Sigmoide: σ(x) = 1/(1 + e−x).

• Softplus: σ(x) = ln(1 + ex)

• Tangente hiperbólica: σ(x) = tanh(x)

• ReLU: σ(x) = max(0, x)

3.1. Neuronas artificiales 31

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

1/(1 + e−x)

ln(1 + ex)

tanh(x)
max(0, x)

Figura 3.2: Representación gráfica de algunas funciones de activación. Fuente: elaboración propia

Cada una de las funciones tiene sus ventajas y sus desventajas. Las funciones que tienen
un rango finito tienden a producir resultados más estables, mientras las que no tienden a
hacer que la red se entrene más rápidamente. Para la estimación de valores se suelen utilizar
últimas neuronas la función linear, ya que no limitan el rango de valores que puede producir
la neurona.

3.1.1 Perceptrón

Con una neurona ya podemos construir un modelo de machine learning capaz de aprender
ciertas funciones. Utilizando una neurona con la función de activación de signo, podemos
construir un perceptrón, un clasificador binario lineal [21]. Aunque hay muchas funciones de
activación de signo que se utilizan para implementar perceptrones, nosotros utilizaremos la
siguiente:

σ(x) =

{
0 si x < 0

1 si x ≥ 0
(3.3)

Un perceptrón entrenado es capaz de clasificar adecuadamente cualquier función en Rn que
sea linealmente separable [22], siendo n la cantidad de entradas del perceptron. El perceptrón
se puede representar como un hiperplano [23] en Rn, que clasifica como 0 a todos los elementos
de un lado y a 1 todos los elementos del otro lado.

Figura 3.3: Representación gráfica de un perceptrón en R2. Fuente: elaboración propia

32 Inteligencia artificial

Aunque los perceptrones estén limitados a funciones linealmente separables, se pueden en-
trenar de forma muy simple. Para entrenar un perceptrón, tenemos que encontrar los pesos
adecuados, de forma que para todos los ejemplos de datos el perceptron produzca la salida
correspondiente. Sea m en número de ejemplos, n el número de entradas por ejemplo, xik
la entrada i para el ejemplo k, yk la salida esperada para el ejemplo k y wi los pesos del
perceptron, tendríamos que satisfacer la siguiente condición para entrenar el perceptrón:

∀k ∈ [1,m], yk = σ

(
n∑

i=0

wixik

)
(3.4)

Cabe destacar que, como estamos utilizando la fórmula simplificada (Eq. 3.2), w0 es el bias,
y por lo tanto x0k = 1 para todas las salidas. Para poder medir el progreso respecto a
el resultado que necesitamos, definiremos una métrica que mide el error obtenido para un
ejemplo concreto:

Ek = yk − σ

(
n∑

i=0

wixik

)
(3.5)

El error será positivo si la salida esperada yk es mayor que la salida actual, negativo si es
menor, o 0 si la salida producida es correcta. Utilizando esta métrica, podemos actualizar
los pesos para mitigar el error [24]. Si el error es positivo, significa que tenemos que hacer
que el valor de la suma ponderada obtenido con las entradas x0k . . . xnk sea mayor. Para las
entradas positivas, tendremos que incrementar wi, y para las negativas decrementarlo. Esto
se puede realizar multiplicando cada entrada por una pequeña constante η, y añadiéndole
esto a wi.

Ek > 0 =⇒ ∀i ∈ [0, n], wi ← wi + xik η (3.6)

Cuando el error es negativo, podemos realizar lo mismo pero con el signo invertido, ya que
el objetivo entonces es disminuir la media ponderada, no aumentarla.

Ek < 0 =⇒ ∀i ∈ [0, n], wi ← wi − xik η (3.7)

Si el error es cero, dejamos los pesos como están, ya que producen la salida adecuada.

Ek = 0 =⇒ ∀i ∈ [0, n], wi ← wi (3.8)

Como sumamos xik η cuando Ek > 0, restamos xik η cuando Ek < 0 y no sumamos ni restamos
nada cuando Ek = 0, podemos unificar las ecuaciones 3.6, 3.7 y 3.8 en una sola ecuación:

∀i ∈ [0, n], wi ← wi + Ek xik η (3.9)

De esta forma, se actualizarán los pesos corrigiendo un poco el error. Si repetimos esta ecua-
ción para todos los ejemplos disponibles, eventualmente el perceptrón producirá el resultado
correcto para todos, siempre que los ejemplos sean linealmente separables. A partir de esta
ecuación, podemos elaborar un algoritmo de entrenamiento de perceptrones, que conseguirá
entrenar correctamente un perceptron, siempre que el conjunto de datos que estamos apren-
diendo sea linealmente separable.

3.2. Redes neuronales artificiales 33

Entradas: x (matriz m× n), y (vector de m)
E = 1
while E > 0 do

E ← 0
for k de 1 a m do

y′ ← σ(
∑n

i=0wixik)
Ek ← yk − y′
for k de 0 a n do

wi ← wi + Ek xik η
end for

end for
end while

Figura 3.4: Algoritmo de aprendizaje para un perceptrón. Fuente: elaboración propia

El valor η que hemos utilizando se conoce como la learning rate del aprendizaje. Un valor
más alto hace que se corrija el error más rápidamente, pero un valor demasiado alto puede
llevar el aprendizaje a estancarse en ciertos casos. Para perceptrones, un valor recomendable
es η = 0.01, aunque dependiendo de los datos concretos será necesario ajustar el valor.

3.2 Redes neuronales artificiales
Una red neuronal es simplemente un conjunto de neuronas conectadas entre sí. Las primeras
neuronas de la red, que se conocen como las neuronas de entrada, directamente reciben sus
valores en vez de calcularlos. Estas neuronas actuarán como fuente de datos para el resto de
la red, y a través de ellas es como la red neuronal recibe datos. Las últimas neuronas, las
neuronas de salida, calculan los valores que corresponden con las salidas producidas por la
red. Las neuronas que no son neuronas de entrada o de salida se llaman las neuronas ocultas.

1

x1

x2

x3

1

h1

h2

h3

h4

y1

y2

Figura 3.5: Red con 3 neuronas de entrada, 4 ocultas y 2 de salida. Fuente: elaboración propia

Las neuronas de una red neuronal normalmente se organizan en capas, como se puede ver en
Fig. 3.5. La primera capa es la capa de entrada, la última la de salida, y las capas intermedias

34 Inteligencia artificial

son las capas ocultas. Cuando una red está estructurada por capas, cada capa suele obtener
sus entradas de la capa anterior y pasarlas a la capa siguiente. Los cálculos de una capa son
similares a los cálculos de una neurona, pero para cada una de las neuronas de la capa:

yj = σ

(
n∑

i=1

wij xi

)
(3.10)

Teniendo en cuenta que w es una matriz y x e y son vectores, podemos simplificar la expresión
anterior utilizando multiplicación de matrices:

yj = σ

[w0j . . . wnj

]

1
x1
...
xn


 = σ

(
wT
•j x
)

(3.11)

También podemos calcular todas las salidas con la misma operación:

y =

 y1...
ym

 = σ


w00 . . . wn0

...
w0m . . . wnm



1
x1
...
xn


 = σ

(
wTx

)
(3.12)

Como se puede ver en las ecuaciones 3.11 y 3.12, la matriz de pesos w está transpuesta
para que los cálculos sean equivalentes a los de la ecuación 3.10. El vector de entradas en
ambas ecuaciones también tiene x0 = 1, para seguir la simplificación del bias establecida en
la ecuación 3.2. La ecuación 3.12 también se puede adaptar para recibir varias entradas a la
vez, lo que nos dejaría con la siguiente ecuación:

y =

 y11 . . . y1p
...

ym1 . . . ymp

 = σ


w00 . . . wn0

...
w0m . . . wnm




1 . . . 1
x11 . . . x1p
...
xn1 . . . xnp


 = σ

(
wTx

)
(3.13)

Una vez tenemos la fórmula exacta para calcular la salida de una capa a partir de sus entradas,
podemos aplicar la misma fórmula para calcular el resultado de todas las capas. Como se
puede ver en Figura 3.6, las redes pueden tener muchas capas y cada capa puede tener
cualquier número de neuronas.

3.3. Entrenamiento 35

1

x1

x2

x3

1

h1

h2

h3

h4

1

h′1

h′2

h′3

y1

y2

Figura 3.6: Red neuronal con 1 capa de entrada, 2 ocultas y 1 de salida. Fuente: elaboración propia

Cada capa tiene sus propios pesos para cada una de sus neuronas, además de su propia
función de activación. Dependiendo de la tarea que queramos realizar también existen ciertos
tipos de capas especializados.

3.3 Entrenamiento

Para poder entrenar redes neuronales, primero necesitamos calcular el error que ha cometido
la red. Esto no lo podemos medir como en los perceptrones (ver ecuación 3.5), ya que para
redes neuronales no es tan sencillo extraer el error de cada peso de la red. Por esto definiremos
un error para toda la red, E, que será lo lejos que está el resultado de la red de la salida
esperada. Sea y la salida de la red para la entrada x e ŷ la salida esperada para esas mismas
entradas, tendríamos la siguiente expresión, siendo L la función de error (loss function en
inglés):

E = L(y, ŷ) (3.14)

Normalmente nos interesa que la red aprenda de forma más rápida cuánto más alejada esté del
valor ideal. Esto se puede implementar en la función L, utilizando funciones que se comporten
de esta forma. Una de las funciones más utilizadas es la función de pérdida cuadrática, que
suma el cuadrado de las diferencias de cada uno de los elementos. Se puede implementar de
la siguiente forma:

L(y, ŷ) = (y − ŷ)2 (3.15)

3.3.1 Backpropagation

Para el entrenamiento de redes neuronales, normalmente se utiliza un algoritmo llamado
backpropagation. Este algoritmo calcula cuánto afecta al error cada uno de los pesos de cada
capa. El algoritmo funciona calculando el error primero para las neuronas de la capa de
salida, y “propaga” este error hacia atrás para calcular el error de las subsecuentes capas.
Para estudiar las fórmulas de backpropagation, primero será necesario establecer los símbolos
que utilizaremos en esas fórmulas. Estos símbolos son los siguientes:

36 Inteligencia artificial

• xc: entrada recibida por la capa c

• wc: pesos de la capa c

• σc: función de activación de la capa c

• σ′c: primera derivada de la función de activación de la capa c

• zc: valores internos de la capa c. zc = wT
c xc

• ac: valores de activación de la capa c. ac = σ(zc)

• δc: error de cada neurona de la capa c

• ∇c: gradiente de la capa c, el error para cada uno de los pesos de la capa c

• L: función de pérdida

• y: salida obtenida de la red

• ŷ: salida esperada

• E: error de la red. E = L(y, ŷ)

Para calcular el error de cada neurona de la capa l, tenemos que ver cuanto hace variar esa
neurona al error total. Esto se puede calcular con la derivada parcial del error respecto a los
valores internos de esa neurona, de forma que nos queda la siguiente ecuación:

δc =
∂E

∂zc
(3.16)

A partir de este valor se puede calcular fácilmente el gradiente de la capa c respecto al error
de la red, como se explica detalladamente en [25]. Tras realizar los cálculos y demostracio-
nes necesarias, nos queda la siguiente fórmula para calcular el gradiente a partir del error
propagado:

∇c =
∂E

∂wc
= xc δc (3.17)

Lo único que nos queda es hallar la fórmula para calcular δc. Empezamos aplicando la regla
de la cadena para dividir la expresión en dos derivadas:

δc =
∂E

∂zc
=
∂E

∂ac
� ∂ac
∂zc

(3.18)

La anterior ecuación utiliza el producto de Hadamard �, que es la multiplicación elemento a
elemento de todos los elementos de dos matrices. Como ac = σ(zc), podemos simplificar aún
más la expresión:

δc =
∂E

∂ac
� ∂σc(zc)

∂zc
=
∂E

∂ac
� σ′c(zc) (3.19)

Para las capas de salida, como la activación de la capa (ac) es parte del la salida de la red (y),
podemos expresar ∂E/∂ac a partir de la función de pérdida [26]. Sea ŷc el vector de salidas

3.3. Entrenamiento 37

esperadas para esta capa de salida (el subvector de ŷ para ac en vez de para todo y), tenemos
la siguiente fórmula, siendo L′ la derivada de L respecto a y:

∂E

∂ac
=
∂L(ac, ŷc)

∂ac
= L′(ac, ŷc) (3.20)

Por ejemplo, para L(y, ŷ) = (y − ŷ)2, tendríamos la siguiente derivada:

L′(y, ŷ) = 2(y − ŷ) (3.21)

Y por lo tanto tendríamos la siguiente fórmula para el error de las capas de salida:

δc = L′(ac, ŷc)� σ′c(zc) = 2(ac − ŷc)� σ′c(zc) (3.22)

Para arquitecturas secuenciales, solo tenemos una única capa de salida, por lo que la anterior
ecuación se puede simplificar aplicando que yc = y:

δc = L′(y, ŷ)� σ′c(zc) = 2(y − ŷ)� σ′c(zc) (3.23)

Para el resto de capas, tenemos que formar el error a partir del error de las capas siguientes.
Es necesario realizar un poco de desarrollo matemático adicional, como se puede ver en [25].
Sea c′ la capa (o capas) que son inmediatamente siguientes a la capa c, entonces obtenemos
la siguiente expresión:

∂E

∂ac
= wT

c′δc′ (3.24)

Por lo tanto, obtenemos la siguiente expresión para calcular δc a partir de δc′ :

δc =
∂E

∂ac
� σ′c(zc) = wT

c′δc′ � σ′c(zc) (3.25)

Para las arquitecturas secuenciales, como c′ va a ser únicamente la capa c+ 1, obtenemos la
siguiente expresión:

δc = wT
c+1δc+1 � σ′c(zc) (3.26)

Juntando ambos casos (ecuaciones 3.22 y 3.25), podemos calcular el error δc de una capa c
de la red neuronal de la siguiente forma, siendo c′ la capa siguiente a c:

δc =

{
L′(ac, ŷc)� σ′c(zc) si c es una capa de salida
wT
c′δc′ � σ′c(zc) si c no es una capa de salida

(3.27)

Para arquitecturas secuenciales (ecuaciones 3.23 y 3.26), nos quedaría la siguiente fórmula:

δc =

{
L′(y, ŷ)� σ′c(zc) si c es una capa de salida
wT
c+1δc+1 � σ′c(zc) si c no es una capa de salida

(3.28)

38 Inteligencia artificial

3.3.2 Descenso por gradiente
Como se vio en la ecuación 3.17, podemos calcular el gradiente de la capa c a partir de δc.
Una vez hemos obtenido el gradiente, tenemos que actualizar los pesos de la red, de manera
que el error se reduzca. Como el gradiente nos indica la dirección por la que es más rápido
incrementar el error, para reducir los pesos tenemos que restar para cada peso su gradiente.
Utilizaremos también una learning rate, al igual que para entrenar perceptrones (ver apartado
3.1.1).

wc ← wc − η∇c (3.29)

Este tipo de optimización se llama descenso por gradiente, y es una de las formas más simples
de actualizar los pesos de una red neuronal una vez se ha obtenido el gradiente de todas las
capas. Opcionalmente se le puede añadir inercia al algoritmo, controlada por el parámetro α,
que determina lo rápido que cambia la inercia de la optimización:

∆wc ← α∆wc − η∇c

wc ← wc +∆wc
(3.30)

Existen muchos otros métodos de optimización [27], cada uno con sus complejidades y pará-
metros. Aunque muchos de los otros métodos pueden ser muy complejos en su funcionamiento,
su objetivo es el mismo: reducir el error de la red lo máximo posible dado los gradientes.

A la hora de optimizar una red neuronal, el optimizador elegido se ejecuta una gran can-
tidad de veces, reduciendo un poco el error de la red en cada iteración. Al igual que con los
perceptrones, escoger una learning rate adecuada es muy importante. Una learning rate de-
masiado pequeña hará que el algoritmo aprenda muy lentamente, mientras que una learning
rate demasiado grande puede hacer que el algoritmo no llegue a converger, y que entre en
bucle sin mejorar la red.

4 Algoritmos de multiplicación de matrices

Un área en la que la computación cuántica podría beneficiar substancialmente a la inteligen-
cia artificial es la implementación de algoritmos más eficientes. Existen muchos algoritmos
cuánticos que, utilizando diversas técnicas, realizan el mismo cálculo que un algoritmo clásico
pero con menor complejidad computacional.

La multiplicación de matrices es uno de los algoritmos que más efecto tendría mejorarlo,
ya que para matrices bastante grandes su cálculo demanda muchos recursos. Además, como
ya se ha visto en los apartados 3.2 y 3.3.1, es uno de los cálculos más utilizados a la hora
de entrenar y ejecutar redes neuronales, el principal tipo de modelo de inteligencia artificial
actual. La implementación de algoritmos más eficientes de multiplicación de matrices podría
reducir substancialmente el coste computacional requerido por los modelos de inteligencia
artificial.

Empezaremos viendo los algoritmos actuales para la multiplicación de matrices, y luego
veremos los algoritmos cuánticos. Por último, también realizaremos un análisis comparativo
de la posible ahorro computacional que se podría realizar en redes modernas.

4.1 Algoritmos clásicos

Existen varios algoritmos de computación clásica para calcular la multiplicación de dos ma-
trices. El algoritmo más sencillo es el algoritmo iterativo, que se basa en calcular uno a uno
los resultados de la multiplicación:

Entradas: A (matriz n×m) y B (matriz m× p)
C← matriz n× p con todos los valores a 0
for i de 1 a n do

for j de 1 a p do
for k de 1 a m do

Cij ← Cij +AikBkj

end for
end for

end for

Figura 4.1: Algoritmo iterativo de multiplicación de matrices. Fuente: elaboración propia

Este algoritmo tiene complejidad Θ(nmp). Si lo considerásemos con matrices cuadradas (n =
m = p), entonces nos quedaría la complejidad Θ(n3). Aunque este algoritmo no es muy
eficiente, lo utilizaremos de base a la hora de comparar el resto de algoritmos.

39

40 Algoritmos de multiplicación de matrices

4.1.1 Algoritmo de Strassen

El algoritmo de Strassen, publicado por Volker Strassen en 1969 [28], es el primer algoritmo
de multiplicación de matrices subcúbico. Con su publicación, Strassen demostró que la mul-
tiplicación de matrices se podía reducir más que Θ(n3), lo que resultó en más investigación y
en el descubrimiento de algoritmos de multiplicación de matrices con complejidades aún más
reducidas.

Para realizar la multiplicación C = AB, el algoritmo primero divide las matrices A, B y C
en 4 matrices de igual tamaño:

A =

(
A11 A12

A21 A22

)
B =

(
B11 B12

B21 B22

)
C =

(
C11 C12

C21 C22

)
(4.1)

Para realizar la división, es necesario que ambas dimensiones de la matriz sean pares. En caso
de que una de las dimensiones sea impar, se le añadirá una fila o columna de 0s a la matriz
para hacer que la dimensión sea par, y que se pueda dividir en 4 matrices del mismo tamaño.
Esta dimensión extra luego se descartará a la hora de obtener el resultado.

La división de C en 4 matrices nos permite calcular C a partir de C11, C12, C21 y C22, que
a su vez las podemos calcular a partir de las subdivisiones de A y B:

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

(4.2)

Estas ecuaciones no nos ahorrarían nada, ya que requeriríamos 8 multiplicaciones de matrices
de la mitad de tamaño, que equivale a la complejidad de una multiplicación de matriz de
tamaño normal (8 · n/2 ·m/2 · p/2 = nmp). La clave del algoritmo de Strassen en calcular
ciertos valores intermedios para ahorrarnos una de las multiplicaciones. Definiremos de la
siguiente forma los 7 valores intermedios que utilizaremos. Como se puede ver, cada uno de
los valores se calcula utilizando una única multiplicación de matrices:

M1 := (A11 +A22)(B11 +B22)

M2 := (A21 +A22)B11

M3 := A11(B12 +B22)

M4 := A22(B21 +B11)

M5 := (A11 +A12)B22

M6 := (A21 +A11)(B11 +B12)

M7 := (A12 +A22)(B21 +B22)

(4.3)

A partir de estos 7 valores intermedios, podemos calcular C11, C12, C21 y C22 a partir de los
7 valores intermedios Mi, y por lo tanto el algoritmo se ahorra una de las 8 multiplicaciones
de matrices.

4.1. Algoritmos clásicos 41

C11 =M1 +M4 −M5 +M7

C12 =M3 +M5

C21 =M2 +M4

C22 =M1 −M2 +M3 +M6

(4.4)

El algoritmo de Strassen aplica este proceso de forma recursiva hasta que las matrices sean
suficientemente pequeñas (por ejemplo, hasta que una de las dimensiones llegue a 1). A partir
de todo esto, podemos ya definir el algoritmo de Strassen:

Entradas: A (matriz n×m) y B (matriz m× p)
if n = 1 ∨m = 1 ∨ p = 1 then

C ← multiplicaciónIterativa(A, B)
else

A11, A12, A21, A22 ← dividirEn4(A)
B11, B12, B21, B22 ← dividirEn4(B)
M1 ← strassen(A11 +A22, B11 +B22)
M2 ← strassen(A21 +A22, B11)
M3 ← strassen(A11, B12 +B22)
M4 ← strassen(A22, B21 +B11)
M5 ← strassen(A11 +A12, B22)
M6 ← strassen(A21 +A11, B11 +B12)
M7 ← strassen(A12 +A22, B21 +B22)
C11 ← recortar(M1 +M4 −M5 +M7, n/2, p/2)
C12 ← recortar(M3 +M5, n/2, p/2)
C21 ← recortar(M2 +M4, n/2, p/2)
C22 ← recortar(M1 −M2 +M3 +M6, n/2, p/2)
C ← juntar4(C11, C12, C21, C22)

end if

Figura 4.2: Algoritmo de Strassen. Fuente: elaboración propia

Las funciones auxiliares utilizadas en el algoritmo anterior son las siguientes:

• strassen(A, B): la función principal del algoritmo. Se una para realizar llamadas recur-
sivas.

• multiplicaciónIterativa(A, B): algoritmo iterativo de multiplicación de matrices.

• dividirEn4(A): divide una matriz en 4 submatrices de igual tamaño. Si alguna de las
dimensiones son impares, la expande con una fila/columna de ceros.

• recortar(A, n, m): devuelve una matriz con los mismos elementos pero con tamaño
n×m, descartando los elementos que se queden fuera de la matriz original.

42 Algoritmos de multiplicación de matrices

• juntar4(A, B): junta 4 submatrices de igual tamaño para construir una matriz a partir
de ellas.

En cada iteración, para calcular la multiplicación de matrices de tamaño n× n se realizan 7
multiplicaciones de tamaño n/2 × n/2, y muchas sumas y restas. Si f(n) es la complejidad
del algoritmo para multiplicar matrices n×n, nos queda la siguiente relación de recurrencia:

f(n) = 7 · f
(n
2

)
+O

(
n2
)

(4.5)

El término O(n2) es la complejidad de las sumas y restas, que como son de matrices n/2×n/2,
serían O((n/2)2) = O(n2). Resolviendo esta relación de recurrencia, nos queda la siguiente
complejidad para el algoritmo de Strassen:

f(n) = O(nlog27) ≈ O(n2.807) (4.6)

Como podemos ver, la complejidad es menor que la del algoritmo iterativo. No obstante, este
algoritmo requiere muchas más sumas y restas de matrices, cosa que introduce una constan-
te computacional bastante grande y hace que este algoritmo solo sea mejor que el algoritmo
iterativo para matrices grandes. En complejidad espacial, una implementación básica del algo-
ritmo de Strassen requeriría O(n2) de espacio, mucho más que el O(1) del algoritmo iterativo.
No obstante, utilizando ciertas optimizaciones y reciclando el espacio en las iteraciones, se
puede implementar con O(1) de espacio adicional [29].

4.1.2 Algoritmo de Coppersmith-Winograd

Otro de los algoritmos más importantes de multiplicación de matrices es el algoritmo pu-
blicado por Don Coppersmith y Shmuel Winograd en 1990 [30]. Este algoritmo, nombrado
Coppersmith-Winograd, fue el mejor algoritmo conocido de multiplicación de matrices hasta
2010. Aunque el algoritmo en sí es demasiado complejo para explicarlo aquí, la idea básica
es la misma que para el algoritmo de Strassen: encontrar una manera de multiplicar dos
matrices n× n con menos de n3 multiplicaciones, y aplicarlo recursivamente a matrices más
y más pequeñas. La versión original del algoritmo obtiene una complejidad de O(n2.376).

El mejor algoritmo actual tiene una complejidad ligeramente menor, de O(22.372) [31]. Este
algoritmo está basado en la misma técnica que el algoritmo de Coppersmith-Winograd y
se publicó en 2023. Como sus complejidades son tan similares, utilizaremos el algoritmo de
Coppersmith-Winograd en el análisis comparativo (ver apartado 4.3)

4.2 Algoritmos cuánticos

Aprovechando las propiedades de los ordenadores cuánticos, es posible construir algoritmos
de multiplicación de matrices con complejidades más reducidas que los algoritmos clásicos. En
este trabajo estudiaremos tres de los principales y realizaremos una análisis de complejidad
entre ellos y los algoritmos actuales de multiplicación de matrices.

4.2. Algoritmos cuánticos 43

4.2.1 Por test de intercambio (swap test)

Este algoritmo cuántico utiliza una rutina cuántica conocida como Swap test (test de inter-
cambio). Esta rutina permite estimar el producto interior de dos vectores de cúbits, que se
puede luego utilizar para multiplicar dos matrices. Para realizar la multiplicación de matrices
C = AB, sea Ai• la fila i de la matriz A, B•j la columna j de la matriz B, xy el producto
interior y ||v|| el módulo del vector v, podemos calcular la multiplicación de matrices con la
siguiente fórmula:

Cij = ||Ai•|| ||B•j ||Ai•B•j (4.7)

Las magnitudes de los vectores se pueden calcular de manera sencilla en O(n2). El único paso
de esta fórmula que no podemos calcular con complejidad cuadrática son los n2 productos
interiores, ya que si los calculamos directamente cada uno llevaría O(n), por lo que tendríamos
complejidad O(n3). Para reducir esta complejidad emplearemos un circuito cuántico conocido
como el Swap test, que permite, tras ejecutar la rutina múltiples veces, cada vez producir una
mejor aproximación del producto interior de dos vectores. Aquí solo se explicará la manera
de construir el circuito para 1 cúbit, ya que cualquier otro caso es demasiado complejo de
realizar a mano. No obstante, se puede construir una versión que funciona para vectores de
cualquier número de cúbits con solo ligeramente más complejidad que en el caso de 1 cúbit
[32]. El algoritmo de Swap test se basa en el siguiente circuito cuántico:

|0⟩ H H

|ϕ⟩

|ψ⟩

Figura 4.3: Circuito para una iteración de Swap test de 1 cúbit. Fuente: elaboración propia

Este circuito de 3 cúbits, primero aplica una puerta Hadamard (ver apartado 2.3.2) al primer
cúbit, luego aplica una puerta CSWAP (ver apartado 2.3.5.4), utilizando el primer cúbit como
control. Luego vuelve a aplicar una puerta Hadamard al primer cúbit. Por último, medimos
el primer cúbit, para ver si produce 0 o 1.

El circuito cuántico empieza con el estado |0, ϕ, ψ〉, siendo los estados ϕ y ψ variables
desconocidas. Después de la primera puerta H, el circuito pasa al siguiente estado:

(H ⊗ I ⊗ I) |0, ϕ, ψ〉 = H |0〉 ⊗ |ϕ, ψ〉

=
|0〉+ |1〉√

2
⊗ |ϕ, ψ〉

=
|0, ϕ, ψ〉+ |1, ϕ, ψ〉√

2

(4.8)

44 Algoritmos de multiplicación de matrices

Tras la puerta SWAP controlada, que invierte |ϕ〉 y |ψ〉 cuando el primer cúbit vale 1, pasamos
a este estado:

CSWAP |0, ϕ, ψ〉+ |1, ϕ, ψ〉√
2

=
|0, ϕ, ψ〉+ |1, ψ, ϕ〉√

2
(4.9)

Por último, aplicamos la segunda puerta Hadamard al primer cúbit, que nos deja en el
siguiente estado:

(H ⊗ I ⊗ I) |0, ϕ, ψ〉+ |1, ϕ, ψ〉√
2

=
|0, ϕ, ψ〉+ |1, ϕ, ψ〉+ |0, ψ, ϕ〉 − |1, ψ, ϕ〉

2
(4.10)

Tras todo esto, lo único que nos queda es medir el primer cúbit, para lo que calcularemos la
probabilidad de que el sistema se encuentre en cada uno de los casos. Si realizamos el cálculo,
nos quedan los siguientes amplitudes para cada uno de los 8 estados:

|x〉 αx P (|x〉) = |αx|2
|000〉 ϕ0ψ0 |ϕ0ψ0|2
|001〉 (ϕ0ψ1 + ϕ1ψ0)/2 |ϕ0ψ1 + ϕ1ψ0|2/4
|010〉 (ϕ0ψ1 + ϕ1ψ0)/2 |ϕ0ψ1 + ϕ1ψ0|2/4
|011〉 ϕ1ψ1 |ϕ1ψ1|2
|100〉 0 0
|101〉 (ϕ0ψ1 − ϕ1ψ0)/2 |ϕ0ψ1 − ϕ1ψ0|2/4
|110〉 (ϕ1ψ0 − ϕ0ψ1)/2 |ϕ1ψ0 − ϕ0ψ1|2/4
|111〉 0 0

Tabla 4.1: Resultado de un Swap test de 1 cúbit respecto a |ϕ, ψ〉. Fuente: elaboración propia

La tabla contiene las amplitudes de cada estado αx, junto con la probabilidad de cada uno de
los estados, que es α2

x. Si ahora sumamos las probabilidades de los estados cuándo el primer
cúbit vale 0 (los estados |000〉, |001〉, |010〉 y |011〉) y cuando vale 1 (los estados |100〉, |101〉,
|110〉 y |111〉) y simplificamos, podemos obtener las probabilidades de que el primer cúbit
valga 0 o 1 tras ejecutar el algoritmo:

P (primer cúbit = 0) = |ϕ0ψ0|2 + |ϕ1ψ1|2 +
|ϕ0ψ1 + ϕ1ψ0|2

2

P (primer cúbit = 1) =
|ϕ0ψ1 − ϕ1ψ0|2

2

(4.11)

Estos resultados son muy interesantes, ya que todos los componentes paralelos (|ϕ0ψ0|2 y
|ϕ1ψ1|2) pertenecen al estado |0〉, pero los componentes perpendiculares (|ϕ0ψ1 + ϕ1ψ0|2 y
|ϕ0ψ1 − ϕ1ψ0|2) pertenecen a ambos estados. Cuando los estados |ϕ〉 y |ψ〉 son ortogonales,
hay un 50% de que el primer cúbit sea 0 y otro 50% de que sea 1. Si |ϕ〉 y |ψ〉 son paralelos,
entonces el primer cúbit siempre será 0. De forma general, cuanto más paralelos sean los
vectores de cúbits |ϕ〉 y |ψ〉, mayor será la probabilidad de que el primer cúbit sea 0.

4.2. Algoritmos cuánticos 45

Si ejecutamos el algoritmo k veces, utilizando k copias de |ϕ〉 y |ψ〉 ya preparadas, entonces
podemos estimar el producto interior de |ϕ〉 y |ψ〉. Siendo mi el resultado de medir el primer
cúbit cada una de esas veces, tenemos la siguiente fórmula para aproximar el resultado del
producto interior de |ϕ〉 y |ψ〉.

1− 1

k

k∑
i=1

mi (4.12)

Con esta fórmula podemos obtener con una precisión arbitrariamente alta el resultado del
producto interior, ya que para mayor precisión simplemente hay que ejecutar el algoritmo
más veces. Como la precisión es independiente del tamaño de las matrices a multiplicar, no
aumenta la complejidad, por lo que este algoritmo es O(1), sin tener en cuenta la preparación
de los cúbits.

Este es el caso de 1 cúbit. Para vectores de varios cúbits, podemos utilizar el mismo
algoritmo, modificado para que la puerta SWAP controlada se realice para cada una de las
parejas |ϕ〉i y |ψ〉i de los vectores de cúbits |ϕ〉 y |ψ〉:

n

n

|0⟩ H H

|ϕ⟩

|ψ⟩

Figura 4.4: Circuito para una iteración de Swap test de n cúbits. Fuente: elaboración propia

La única desventaja con este algoritmo, es que construir y ejecutar la puerta Swap contro-
lada para n cúbits no es constante. Utilizando ciertos trucos a la hora de ejecutar todas las
puertas necesarias para todos los cúbits de la matriz, podemos reducir esta complejidad a
O(logc poly m), donde 1 < c ≤ 2 y polym es un polinomio de la cantidad de cúbits a preparar
[33]. Es aún un problema abierto saber el valor exacto de c y el menor polinomio posible de
m, por lo que nosotros ignoraremos ese factor en el análisis. Como ese factor es logarítmico,
tampoco perdemos mucha precisión en el análisis si lo ignoramos.

Ahora, lo único que nos falta es construir todo el algoritmo para multiplicar matrices,
utilizando las rutinas que hemos visto. Utilizaremos las siguientes funciones auxiliares a la
hora de describir el algoritmo:

• prepararEstados(A, B): prepara los estados cuánticos necesarios para ejecutar un swap
test para cada valor de las matrices A y B.

• swapTest(|x〉): ejecuta un swap test para cada uno de los valores de las matrices A
y B y devuelve el valor en una matriz de resultados que corresponde al resultado de
cada swap test (0 o 1). Recibe como entrada los estados cuánticos ya preparados para
realizar los swap tests de forma eficiente.

46 Algoritmos de multiplicación de matrices

• calcularProductosMagnitudes(A, B): calcula ||Ai•|| ||B•j || para todos los i, j ∈ [1, n].

A partir de estas funciones, el algoritmo completo que calcula la multiplicación matricial
C = AB utilizando swap tests es el siguiente:

Entradas: A (matriz n× n), B (matriz n× n) y k (iteraciones de cada swap test)
M← calcularProductosMagnitudes(A,B)
R← matriz n× n con todos los valores a 0
for i de 1 a k do
|ψ〉 ← prepararEstados(A,B)
R← R+ swapTest(|ψ〉)

end for
C← matriz n× n
for i de 1 a n do

for j de 1 a n do
Cij ←Mij (1− 1

kRij)
end for

end for

Figura 4.5: Algoritmo de multiplicación de matrices basado en Swap test. Fuente: elaboración propia

Como la función swapTest() realiza un swap test para cada elemento de las matrices A y B, y
cada test tiene complejidadO(logc poly n2), la complejidad de la función es deO(n2 logc poly n2).
Ignorando el factor polinómico para facilitar el análisis, nos queda O(n2). La complejidades
de prepararEstados() y calcularProductosMagnitudes() son O(n2), por lo que la complejidad
total sigue siendo de O(n2).

Teniendo todo esto en cuenta, la complejidad final del algoritmo es de O(n2 k), siendo
k el número de iteraciones. Si cogemos una k que sea constante (un número de iteraciones
que no dependa del tamaño de las matrices), entonces tenemos la complejidad O(n2). Esta
complejidad es mucho menor que la que encontramos incluso en el mejor de los algoritmos
clásicos (O(n2.372)), por lo que podría mejorar mucho la multiplicación de matrices si los
ordenadores cuánticos se vuelven asequibles.

4.2.2 Otros algoritmos

Existen muchos otros algoritmos cuánticos para multiplicación de matrices, como algoritmos
basados en el algoritmo HHL (un algoritmo cuántico de resolución de sistemas de ecuaciones
[34]) y otros basados en SVE (un algoritmo de estimación de descomposición en valores
singulares [35]). Estos algoritmos no tienen complejidades que sean fáciles de comparar con
los algoritmos clásicos, ya que su complejidad depende de la matriz de entrada.

Más concretamente, según el análisis de complejidades realizado en [32], obtenemos la
complejidad Õ

(
κ(A)2n1.75 + n2

)
para el algoritmo basado en HHL y Õ

(
κ(A)n2.25

)
para el

algoritmo basado en SVE, siendo κ(A) el número de condición de la matriz A al realizar el
cálculo C = AB. El número de condición de una matriz X se define de la siguiente forma:

4.3. Análisis teórico de las complejidades 47

κ(X) = ||X|| · ||X−1|| (4.13)

Como se puede ver en la ecuación 4.13, κ(A) depende de A, por lo que las complejidades de
los algoritmos basados en HHL y SVE dependen de los valores de la matriz de entrada. Es
por esto que estos algoritmos no se incluirán en el análisis comparativo de algoritmos, y solo
se analizará el algoritmo cuántico basado en swap tests.

4.3 Análisis teórico de las complejidades
En este capítulo hemos estudiado varios algoritmos clásicos y cuánticos de multiplicación
de matrices. En la tabla 4.2 se puede ver un pequeño resumen de las complejidades de los
algoritmos estudiados.

Algoritmo Complejidad
Iterativo O(n3)
Strassen O(nlog2 7) ≈ O(n2.807)

Coppersmith-Winograd O(n2.376)
Basado en Swap test O(n2)

Tabla 4.2: Complejidades de los algoritmos estudiados. Fuente: elaboración propia

Para este análisis, utilizaremos el tamaño de las matrices de atención de ciertas redes neuro-
nales modernas. Este análisis será una estimación basada en la complejidad de los algoritmos,
e ignora las constantes temporales de los algoritmos y muchas de las optimizaciones que se
realizan en la multiplicación de matrices en las redes neuronales modernas. No obstante, este
análisis nos puede dar una aproximación del speedup que podríamos obtener si estos algorit-
mos se implementasen en el entrenamiento de los modelos de inteligencia artificial actuales.

Para determinar el tamaño de las matrices con el que calcularemos la aproximación, utili-
zaremos las matrices de embedding, ya que todos los modelos que compararemos son trans-
formers [36] y estas matrices suelen ser las matrices más grandes de este tipo de modelo.
Aproximaremos el resultado del embedding como una única matriz cuadrada del mismo ta-
maño. Analizaremos los siguientes modelos:

Modelo Matriz de embedding Matriz cuadrada equivalente
GPT-2 1024× 1600 1280× 1280
GPT-3 2048× 12288 5016.6× 5016.6

GPT-3.5 4096× 12288 7094.5× 7094.5
GPT-4 32768× 3072 10034× 10034

GPT-4 Turbo 128000× 3072 19830× 19830

Tabla 4.3: Tamaño de embedding de los modelos analizados. Fuente: elaboración propia

Aproximaremos el coste de ejecución de cada modelo como el coste de multiplicar dos matrices

48 Algoritmos de multiplicación de matrices

del mismo número de elementos que la matriz de embedding. Utilizaremos las dimensiones
de una matriz cuadrada que tenga el mismo número de elementos para estimar la n de cada
modelo. A partir de la n del modelo, estimaremos su coste para cada algoritmo utilizando la
complejidad, donde sustituiremos la n de la complejidad por la n del modelo. Obtenemos los
siguientes resultados:

Modelo Iterativo Strassen Coppersmith-Winograd Swap test
GPT-2 2.097× 109 5.272× 108 2.414× 107 1.638× 106

GPT-3 1.263× 1011 2.437× 1010 6.197× 108 2.516× 107

GPT-3.5 3.571× 1011 6.450× 1010 1.412× 109 5.331× 107

GPT-4 1.010× 1012 1.707× 1011 3.217× 109 1.007× 108

GPT-4 Turbo 7.798× 1012 1.155× 1012 1.623× 1010 3.932× 108

Tabla 4.4: Estimación del coste de ejecución de los algoritmos estudiados. Fuente: elaboración propia

Modelo Strassen Coppersmith-Winograd Swap test
GPT-2 25.1% 1.151% 0.0781%
GPT-3 19.3% 0.490% 0.0199%

GPT-3.5 18.1% 0.395% 0.0141%
GPT-4 16.9% 0.318% 0.0099%

GPT-4 Turbo 14.8% 0.208% 0.0050%

Tabla 4.5: Coste de ejecución respecto al algoritmo iterativo. Fuente: elaboración propia

4.3.1 Conclusiones del análisis
Como se puede ver en las tablas 4.4 y 4.5, el algoritmo basado en swap tests proporciona una
reducción enorme de coste computacional, incluso teniendo en cuenta ya la reducción propor-
cionada por el algoritmo de Coppersmith-Winograd. Incluso si su implementación requiriese
de una gran cantidad de cálculos adicionales, como la diferencia es tan grande con el resto
de algoritmos el beneficio podría seguir siendo inmenso.

Además, como el beneficio crece a medida que crece la complejidad del modelo, si los
modelos de inteligencia artificial se van volviendo más y más complejos, el incentivo para
desarrollar este tipo de procesadores crecerá con el tiempo. También existen muchos otros
algoritmos cuánticos, algunos con complejidades menores que el algoritmo de swap tests
estudiado, por lo que el beneficio real podría llegar a ser mayor que el calculado en este
análisis, que ya es bastante optimista.

5 Búsqueda de Grover
La búsqueda de Grover (Grover’s search en inglés) es un algoritmos de búsqueda que apro-
vecha las propiedades de la computación cuántica para buscar elementos [37]. El algoritmo
utiliza una función de búsqueda s(x) y busca algún elemento x que devuelva s(x) = 1. El
algoritmos trata la función de búsqueda como una caja negra, lo que significa que no aprove-
cha ninguna propiedad específica de la función. La búsqueda de Grover realiza la búsqueda
de un elemento en O(

√
N), siendo N el número total de elementos. Como se demostró en

[38], esto es óptimo, ya que cualquier algoritmo de búsqueda cuántico tendrá como mínimo
la complejidad temporal Ω(N).

Aunque la búsqueda de Grover es un buen candidato para mejorar la eficiencia de muchos
algoritmos, no se puede aplicar en todos los casos. Esto se debe, como veremos en el apartado
5.1.2, a que tenemos que construir eficientemente una puerta cuántica que dependen de s(x).
No obstante, no podemos simplemente evaluar s(x) para todos los elementos, ya que entonces
la complejidad del algoritmo sería O(N). Dependiendo de ciertas propiedades de la función
s(x) concreta y de los elementos que estemos buscando, en ciertos casos es posible la cons-
trucción eficiente de esa puerta cuántica. En el apartado 5.2 podemos ver algunos algoritmos
de inteligencia artificial en los que se ha conseguido integrar la búsqueda de Grover para
conseguir una mejora de la complejidad temporal.

5.1 Algoritmo de Grover
El algoritmo de Grover se puede dividir en tres pasos principales: inicialización, búsqueda y
inversión sobre la media. El primer paso solo se realiza en la primera iteración, mientras que
los dos últimos se realizan una vez para cada iteración.

5.1.1 Inicialización
El primer paso en el algoritmo es inicializar el estado. Al principio, como no tenemos nada de
información a cerca del problema a resolver, tendremos que inicializar cada uno de los cúbits
a una superposición entre 0 y 1. Específicamente, lo realizaremos de tal manera que cada
uno de los posibles estados tenga la exactamente misma amplitud. Esto se puede realizar de
manera sencilla, inicializando los cúbits a |0n〉 y aplicando la puerta Hadamard a todos los
cúbits del sistema.

Para una búsqueda en un espacio de N = 2n elementos, necesitaremos inicializar n cúbits,
y por lo tanto tendremos que aplicarles una puerta Hadamard paralela de n cúbits. Si N
no fuese una potencia de dos, entonces necesitaríamos n = dlog2Ne cúbits. Tras aplicar la
inicialización a los cúbits, nos queda el siguiente estado cuántico:

|ϕ〉 = H⊗n |0n〉 = 1√
N

∑
x∈{0,1}n

|x〉 (5.1)

49

50 Búsqueda de Grover

Como se puede ver, las amplitudes de todos los estados son 1/
√
N , por lo que todos los

estados tienen la misma probabilidad ((1/
√
N)2 = 1/N). Este estado es importante para

construir ciertas de las puertas que utilizaremos en el algoritmo, por lo que lo llamaremos
|ϕ〉. Para entender mejor el algoritmo, también incluiremos en cada paso una visualización de
como el algoritmo cambia las amplitudes de todos los estados de un sistema de 3 cúbits (ver
figura 5.1). Como durante la ejecución de este algoritmo todas las amplitudes serán números
reales, las visualizaremos utilizando un gráfico de barras.

|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩

0

1

1√
8

A
m

pl
itu

d

Antes de inicializar
Después de inicializar

Figura 5.1: Inicialización de una búsqueda de Grover para 8 elementos. Fuente: elaboración propia

5.1.2 Búsqueda

Después de inicializar el estado, el siguiente paso es la búsqueda. Este paso invierte las
amplitudes de todos los estados que estamos buscando. Dicho de otro modo, invierte las
amplitudes de todos los estados para los que s(x) = 1. Construiremos una puerta lógica para
realizar esta operación. Dada la función s(x), podemos construirla a partir de la siguiente
ecuación:

Us |x〉 = (−1)s(x) |x〉 (5.2)

Entonces, para construir Us simplemente tenemos que crear una matriz diagonal con los
valores (−1)s(x) para cada estado x:

Us = diag
(
(−1)s(|0...0⟩), (−1)s(|0...1⟩), . . . , (−1)s(|1...1⟩)

)

=


(−1)s(|0...0⟩) 0 . . . 0

0 (−1)s(|0...1⟩) . . . 0
...

...
0 0 . . . (−1)s(|1...1⟩)

 (5.3)

Por ejemplo, para un sistema de 4 cúbits y una función s que devuelve 1 para |10〉 y 0 para

5.1. Algoritmo de Grover 51

los demás estados, tendríamos la siguiente matriz:

Us = diag(1, 1,−1, 1) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 (5.4)

Una vez construida la puerta Us, tenemos que aplicársela a los estados iniciales. Visualmente,
para una función de búsqueda para la que s(|010〉) = 1, tendríamos la siguiente representación:

|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩

0

1√
8

− 1√
8

A
m

pl
itu

d

Iniciales
Después de aplicar Us

Figura 5.2: Amplitudes tras aplicar Us en una búsqueda de Grover. Fuente: elaboración propia

Como se puede ver, solo se han invertido las amplitudes de los estados que estamos buscando.

5.1.3 Inversión sobre la media

El último paso del algoritmo de Grover es lo que se conoce como “Inversión sobre la media”.
Esta puerta, para cada amplitud, la invierte respecto a la amplitud media de todos los estados
base. Si α es la amplitud media para todos los estados base de |ψ〉, podemos definir el
comportamiento de Ui de la siguiente forma:

Ui |ψ〉 =
∑

x∈{0,1}n
(2α− αx) |x〉 (5.5)

De esta forma, para cada estado |x〉 su amplitud pasará de αx a 2α−αx, reflejando la amplitud
respecto a la media α. Esta puerta, aprovechando ciertas propiedades de la física cuántica
y de los tensores, se puede implementar de forma sencilla y eficiente. Si |ϕ〉 es el estado del
sistema tras ser inicializado, se puede implementar con la siguiente expresión:

Ui = 2 |ϕ〉 〈ϕ| − I (5.6)

Esta expresión, que utiliza una proyección tensorial (|ϕ〉 〈ϕ|), implementa el comportamiento
que hemos visto sin necesidad de calcular la media de las amplitudes. Como esto solo depende

52 Búsqueda de Grover

de |ϕ〉, que en sí solo depende del número de cúbits del sistema, se puede precalcular Ui.
Visualmente, tras aplicar Ui, tendríamos las siguientes amplitudes:

|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩

0

1

α

0.5

−0.5

A
m

pl
itu

d

Tras aplicar Us

Tras aplicar Ui

Figura 5.3: Amplitudes tras 1 iteración del algoritmo de Grover. Fuente: elaboración propia

5.1.4 Iteraciones

Todo lo que hemos visto hasta ahora describiría una sola iteración del algoritmo de Grover.
Para aplicar el algoritmo al completo, tras inicializar los estados, hay que aplicar Us y Ui

varias veces. Para maximizar la probabilidad de los estados para los que s(x) = 1, tenemos
que aplicar Us y Ui k veces, donde k es la siguiente expresión:

k =

⌊
π

4

√
N

M

⌋
(5.7)

M es la cantidad de estados para los que s(x) = 1, o lo que es equivalente,M =
∑

x∈{0,1}n s(x).
Si aplicamos el algoritmo más veces que las que son óptimas, entonces α se volverá negati-
vo, por lo que al aplicar Ui estaríamos reduciendo la probabilidad de los estados. Podemos
expresar el algoritmo de Grover con el siguiente circuito cuántico:

n|0n⟩ H⊗n Us Ui

repetir k veces

Figura 5.4: Circuito cuántico para el algoritmo de Grover. Fuente: elaboración propia

Visualmente, si ejecutamos el algoritmo iteración a iteración, podemos ver como progresiva-
mente aumenta la probabilidad de los estados para los que s(x) = 1.

5.1. Algoritmo de Grover 53

|000⟩ |001⟩ |010⟩ |011⟩ |100⟩ |101⟩ |110⟩ |111⟩

0

1

0.75

0.5

0.25

A
m

pl
itu

d

Amplitudes iniciales
Iteración 1
Iteración 2

Figura 5.5: Amplitudes de una búsqueda de Grover del estado |010〉. Fuente: elaboración propia

Como se puede ver, tras cada iteración, el algoritmo de Grover aumenta las amplitudes de
los estados que estamos buscando (|010〉 en este caso). Como tenemos 8 elementos (N =
8) y tenemos 1 elemento válido (M = 1), podemos calcular la cantidad de iteraciones que
deberíamos aplicar a partir de la siguiente fórmula:

k =

⌊
π

4

√
N

M

⌋
=

⌊
π

4

√
8

1

⌋
= 2 (5.8)

Como k = 2, si realizásemos otra iteración más, disminuiríamos la probabilidad de los estados
que estamos buscando, por lo mejor es medir realizar dos iteraciones y luego medir el estado.
No obstante, como se puede ver en el gráfico, la probabilidad de que el estado resultante sea
el que queremos no es 100%. El algoritmo de Grover solo nos asegura que, tras realizar el
número de iteraciones necesarias, tendremos más del 50% de probabilidad de encontrar un
elemento para el que s(x) = 1.

5.1.5 Algoritmo completo

Para remediar este problema, si no encontramos un elemento válido podemos simplemente
volver a ejecutar el algoritmo hasta que encontremos. Como la probabilidad de encontrar un
elemento es > 50%, de media lo encontraremos como mucho en 2 intentos, por lo que solo
añade una constante y no afecta a la complejidad del algoritmo.

Teniendo en cuenta esto, podemos especificar el algoritmo de Grover al completo:

54 Búsqueda de Grover

Entradas: Us, s(x), N , M
n← dlog2 Ne
k ← bπ/4

√
N/Mc

|ϕ〉 ← H⊗n |0n〉
Ui ← 2 |ϕ〉 〈ϕ| − I
sol← 0
while sol = 0 do
|ψ〉 ← H⊗n |0n〉
for j de 1 a k do
|ψ〉 ← Ui Us |ψ〉

end for
x← medir(|ψ〉)
sol = s(x)

end while

Figura 5.6: Algoritmo de Grover para M conocida. Fuente: elaboración propia

Como k es proporcional a
√
N/M , la cantidad de iteraciones del algoritmo también es pro-

porcional a la raíz cuadrada de N/M , por lo que tenemos la siguiente complejidad:

O(
√
N/M) (5.9)

Si asumimos el peor caso de M = 1, podemos simplificar la complejidad:

O(
√
N) (5.10)

Este algoritmo solo funciona si conocemos M , la cantidad de elementos para los que s(x) = 1.
Cuando no sepamos la cantidad de elementos, podemos simplemente ejecutar el algoritmo
con k = N,N/2, N/4 . . . N/2t. Con una probabilidad muy grande (> 50%) el algoritmo
encontrará una solución antes de la iteración t = log2(N/M). Si el algoritmo no ha encontrado
una solución para cuando 2t > N , simplemente podemos volver a ejecutar toda la secuencia.

Como la probabilidad de encontrar un resultado correcto en una secuencia es de más de
50%, la cantidad de secuencias media no superará 2, por lo que solo supondrá una cons-
tante adicional, y no modificará la complejidad de O(

√
N). El algoritmo modificado sería el

siguiente:

5.2. Aplicaciones en la inteligencia artificial 55

Entradas: Us, s(x), N
n← dlog2 Ne, sol← 0
|ϕ〉 ← H⊗n |0n〉, Ui ← 2 |ϕ〉 〈ϕ| − I
while sol = 0 do

M ← 1
while M < 2N ∧ sol = 0 do

k ← bπ/4
√
N/Mc

|ψ〉 ← H⊗n |0n〉
for i de 1 a k do
|ψ〉 ← Ui Us |ψ〉

end for
x← medir(|ψ〉)
sol = s(x)
M ← 2M

end while
end while

Figura 5.7: Algoritmo de Grover para M no conocida. Fuente: elaboración propia

5.2 Aplicaciones en la inteligencia artificial
Utilizando la búsqueda de Grover es posible construir algoritmos de machine learning que
sean más rápidos que los que sería posible en un ordenador clásico. Para muchas de las
aplicaciones de inteligencia artificial, el uso del algoritmo de Grover obtiene un speedup de
O(
√
f(n)), siendo O(f(n)) la complejidad algorítmica original del algoritmo. Algunos de las

aplicaciones para las que se han ideado algoritmos que aprovechan la búsqueda de Grover
son las siguientes:

• K vecinos más próximos, un algoritmo de aprendizaje supervisado [39]

• Clustering mediante k-medianas, un algoritmo de aprendizaje no supervisado [40]

• Cálculo de atención para transformers y redes neuronales recurrentes (RNNs) [41]

• Active learning agents y otros algoritmos de aprendizaje por refuerzo [42]

• Entrenamiento de perceptrones [43]

Aunque de momento no se ha conseguido aprovechar el potencial de la búsqueda de Grover
para todos los tipos de algoritmos de machine learning, en los casos en los que sí se ha
conseguido aprovechar el beneficio es muy grande. El speedup obtenido es la raíz del coste
total, por lo que podría reducir los cálculos necesarios varios órdenes de magnitud a la hora
de entrenar modelos muy complejos.

6 Computación cuántica adiabática
La computación cuántica adiabática (adiabatic quantum computing, AQC en inglés) es un
algoritmo de computación cuántica que se puede utilizar para resolver problemas de opti-
mización con un gran número de variables. Aprovechando ciertas propiedades específicas de
la física cuántica, el algoritmo es capaz de resolver problemas de optimización complejos en
menos pasos que un ordenador normal. Este tipo de algoritmo no está basado en puertas
o circuitos cuánticos, si no en otro tipo de computación cuántica conocida como evolución
adiabática [44].

6.1 Algoritmo de evolución adiabática
La computación adiabática consiste en formular el problema de optimización que queremos
resolver como los niveles de energía del sistema cuántico, de manera que la solución del
problema corresponda con el estado con menor energía del sistema. En la mecánica cuántica,
los niveles de energía de cada uno de los estados del sistema se conoce como el Hamiltoniano
del sistema. En otras palabras, tenemos que encontrar un Hamiltoniano Hf cuyo estado
cuántico de menor energía coincida con el estado cuántico del sistema que representa la
solución a nuestro problema. Utilizaremos la notación |H〉↓ para denotar el estado de menor
energía de un Hamiltoniano H.

Solución = |Hf ⟩↓

Estado del sistema

En
er

gí
a

Hf

Figura 6.1: Hamiltoniano que resuelve un problema de optimización. Fuente: elaboración propia

Este paso puede ser un poco complicado, ya que depende del tipo específico de hardware que
estemos utilizando. Distintas arquitecturas de ordenadores adiabáticos tendrán diferentes
maneras de especificar condiciones a sus sistemas, y producirán Hamiltonianos diferentes.
Más adelante analizaremos uno de estos tipos de arquitecturas, y veremos como construir

57

58 Computación cuántica adiabática

Hamiltonianos para resolver problemas en esa arquitectura y como la arquitectura regula los
niveles de energía del sistema para variar el Hamiltoniano.

Una vez hemos encontrado el Hamiltoniano Hf (que es potencialmente muy complejo),
ponemos el sistema a un Hamiltoniano simple, que su estado con menor energía sea conocido.
Este Hamiltoniano, que denominaremos Hi, normalmente es un Hamiltoniano con muy poca
energía en uno de sus estados, y mucha más en cualquier otro. Tras configurar el Hamiltoniano
del sistema a Hs, entonces ponemos el sistema al estado con menor energía de Hi, |Hi〉↓. La
solución del problema se encuentra en |Hf 〉↓, el estado de menor energía deHf . El último paso
es transformar gradualmente el Hamiltoniano del sistema de Hi a Hf . Si lo transformamos
de forma suficientemente gradual, el teorema adiabático [45] nos garantiza que el sistema
se mantendrá en el estado de menor energía, por lo que cuando el Hamiltoniano sea Hf ,
el estado del sistema será la solución del problema de optimización. Este proceso se conoce
como Evolución adiabática.

|Hi⟩↓

|Hx⟩↓

|Hf ⟩↓

Estado del sistema

En
er

gí
a

Hi

Hx

Hf

Figura 6.2: Evolución adiabática de Hi a Hf pasando por Hx. Fuente: elaboración propia

Calcular la velocidad máxima a la que podemos mover el Hamiltoniano (y por lo tanto,
la complejidad temporal del algoritmo) no es tarea fácil. Primero, necesitamos calcular el
Spectral gap (salto espectral) de un Hamiltoniano. Sea |H〉↓ el estado de menor energía de
un Hamiltoniano, |H〉↓2 el segundo estado de menor energía de un hamiltoniano y H |ψ〉 la
energía del estado |ψ〉 para el Hamiltoniano H, entonces podemos calcular el Spectral gap de
un Hamiltoniano utilizando la siguiente fórmula:

∆H = H |H〉↓2 −H |H〉↓ (6.1)

Ahora definimos H(t), el hamiltoniano del sistema en el instante t. En el instante inicial t0
tenemos H(t0) = Hi, y consecuentemente en el instante final tf tenemos H(tf) = Hf . A
partir de todo esto podemos definir la fórmula que determina la velocidad v a la que nos
podemos desplazar sin perturbar el sistema.

v ∝
(

min
t0≤t≤tf

∆H(t)

)2

(6.2)

6.1. Algoritmo de evolución adiabática 59

Esta velocidad es proporcional al cuadrado del menor Spectral gap de H(t), para t0 ≤ t ≤ tf
[45]. Cuando más grande sea el mínimo Spectral gap, a mayor velocidad podremos modificar
el hamiltoniano. Como la velocidad es inversamente proporcional a la complejidad temporal,
obtenemos la siguiente complejidad:

O

(
1

v

)
= O

(
1(

mint0≤t≤tf ∆H(t)

)2
)

(6.3)

Esta complejidad es complicada de comparar a cualquier la de otros algoritmos de optimi-
zación, ya que depende de los hamiltonianos por los que pase el sistema a la hora de ser
optimizado. No obstante, es posible que para ciertos problemas esta manera de optimizarlos
sea más rápida que otros métodos de optimización. Además, se ha demostrado que este tipo
de computación es equivalente en potencia que a la computación cuántica basada en puer-
tas lógicas cuánticas [46], por lo que no hay ningún problema de optimización que se pueda
resolver por otros métodos cuánticos en complejidad O(f(n)) y no por este.

6.1.1 Evolución adiabática aproximada

En muchos casos, no queremos una solución óptima, si no una solución cercana a la solución
óptima. En estos casos, podemos modificar el algoritmo de evolución adiabática para, en
vez de garantizar la solución óptima, garantizar una solución que esté entre las n mejores
soluciones.

Esto lo conseguimos considerando todos los spectral gaps entre las n mejores soluciones.
Sea |H〉↓n el estado n de menor energía de H, entonces tendríamos el siguiente spectral gap
entre |H〉↓n y el siguiente estado de menor energía, |H〉↓n−1:

∆↓n
H = H |H〉↓n −H |H〉↓n−1 (6.4)

Entonces, el spectral gap total para los n estados de menor energía de H (las n mejores
soluciones de H), será el máximo spectral gap de cada uno de los estados:

∆H = max
1≤i≤n

∆↓i
H = max

1≤i≤n

(
H |H〉↓i −H |H〉↓i−1

)
(6.5)

Si se selecciona una n suficientemente grande, este spectral gap será mucho mayor que el que
hemos visto en la evolución adiabática pura. Como la velocidad a la que podemos evolucionar
el sistema es proporcional al cuadrado del mínimo spectral gap (ver ecuación 6.2), aumentar
el spectral gap nos permite aumentar cuadráticamente la velocidad máxima a la que podemos
evolucionar el hamiltoniano del sistema. Como el tiempo requerido para realizar la evolución
del hamiltoniano y obtener la solución al problema que estamos resolviendo es inversamente
proporcional a la velocidad a la que podemos evolucionar el sistema (ver ecuación 6.3), este
tipo de evolución adiabática tendrá un tiempo de ejecución mucho menor que la evolución
adiabática pura. Si no es necesario obtener la solución óptima y sirve con obtener una solución
buena, este tipo de evolución adiabática puede proporcionar tiempos de procesamiento mucho
menores.

60 Computación cuántica adiabática

6.2 Problemas de satisfacibilidad

Este tipo de algoritmos son especialmente útiles para problemas de satisfacibilidad, es decir,
problemas en los que tengamos que encontrar alguna solución que satisfaga todas las restric-
ciones del problema. Estos problemas están caracterizados por las restricciones Ri, y para
resolver el problema tenemos que encontrar un estado |ψ〉 que cumpla R1 ∧ R2 ∧ · · · ∧ RM ,
siendo Ri una de las M restricciones, que puede ser verdadera o falsa para cada estado. Para
este tipo de problemas, es muy sencillo encontrar el hamiltoniano final Hf . Para la restricción
Ri, construiremos el siguiente hamiltoniano parcial:

H i
f |ψ〉 =

{
ai si |ψ〉 satisface Ri

bi si |ψ〉 no satisface Ri

(6.6)

Para todo i, ai < bi, de forma que los estados que cumplan más restricciones tengan menor
energía. Una vez tenemos los hamiltonianos parciales, podemos construir el hamiltoniano
final Hf a partir de ellos:

Hf =
∑
i

H i
f (6.7)

Visualmente, obtendríamos una gráfica de energía similar a la siguiente:

Estado del sistema

En
er

gí
a

H 1
f

H 2
f

H 3
f

Hf

Figura 6.3: Hamiltonianos finales para un problema de satisfacibilidad. Fuente: elaboración propia

De esta manera, los únicos estados para los queH |ψ〉 es mínimo serán los estados que cumplan
todas las restricciones. En el caso de que no exista ningún estado que cumpla todas, el estado
“solución” seguirá siendo el estado con menor energía.
Para realizar la construcción de los hamiltonianos parciales, se puede hacer de manera mucho
más general. La única restricción importante para que los hamiltonianos parciales sean váli-
dos, es que haya un salto significativo entre los estados que satisfacen y que no la satisfacen,
de manera que ese salto sea mayor que la diferencia de energía de los estados que si satisfacen
la condición. Podemos reflejar esto introduciendo dos variables nuevas en la fórmula, vai (|ψ〉)
y vbi (|ψ〉). Estas dos variables miden cuánto difiere el valor real del hamiltoniano con el valor

6.3. Ordenadores D-Wave 61

de la fórmula ideal que vimos anteriormente.

H i
f (|ψ〉) =

{
ai + vai (|ψ〉) si |ψ〉 satisface Ri

bi + vbi (|ψ〉) si |ψ〉 no satisface Ri

(6.8)

Siempre que vai (|ψ〉) y vbi (|ψ〉) sean mucho menores que el salto bi−ai, el hamiltoniano servirá
para realizar la optimización.

6.3 Ordenadores D-Wave

A diferencia de los ordenadores cuánticos basados en puertas lógicas, si que existen modelos
comerciales de ordenadores cuánticos adiabáticos. Esto se debe en gran parte a la compañía
D-Wave Quantum Systems Inc., que en 2011 lanzó al mercado el primer ordenador cuántico
comercial. El ordenador, nombrado “D-Wave One”, utiliza un chip de 128 cúbits que es capaz
de resolver ciertos problemas de optimización.

Figura 6.4: Imagen de un ordenador D-Wave One. Fuente: [47]

El ordenador D-Wave One mide tres metros de alto y más de dos de largo. Gran parte de este
espacio es para aislar térmicamente el procesador del mundo exterior, ya los procesadores
D-Wave operan a una temperatura de 20mK (−273.13C), una temperatura tan baja que
está solo a 0.02 grados del cero absoluto, la temperatura más baja posible.

62 Computación cuántica adiabática

Figura 6.5: Temperaturas de cada placa de refrigeración de un ordenador D-Wave. Fuente: [48]

El D-Wave One está limitado a problemas de optimización discreta, que son problemas de
optimización en los que el resultado es discreto. Para problemas continuos, hay que reformular
el problema, haciendo que sea necesario gastar cúbits adicionales para representar los estados
resultado. No obstante, incluso con esta restricción, fue un gran primer paso en el desarrollo
de los ordenadores adiabáticos, ya que con el potencial de sus 128 cúbits se ha avanzado
mucho el campo. Desde entonces, D-Wave ha producido una variedad de diferentes modelos,
cada uno con mayor número de cúbits que el anterior:

Modelo Número de cúbits Lanzamiento comercial
D-Wave One 128 2011
D-Wave Two 512 2013
D-Wave 2X 1152 2015

D-Wave 2000Q 2048 2017
Advantage >5000 —

Tabla 6.1: Ordenadores adiabáticos D-Wave. Fuente: [49]

Aunque D-Wave One no fuese capaz de obtener mejores resultados que los ordenadores nor-
males , los ordenadores modernos de D-Wave son mucho más rápidos para ciertos problemas
de optimización [50]. Con cada generación no solo se mejora la cantidad de cúbits, si no que
cada uno de los cúbits se puede configurar de manera más precisa, ofreciendo un mayor set
de problemas que el ordenador puede resolver, y haciendo que la optimización sea más rapida

6.3. Ordenadores D-Wave 63

para otros.

6.3.1 Arquitectura D-Wave
En los ordenadores D-Wave, se usa una arquitectura basada en el enlazado de cúbits. Aunque
la arquitectura específica es diferente en cada uno de los ordenadores [51], todos tienen la
misma estructura general. Los hamiltonianos que puede producir los ordenadores D-Wave
se determinan a partir de dos factores: el peso base de cada cúbit y la correlaciones entre
cada par de cúbits [52]. Dividiremos el hamiltoniano final en dos partes, una para los pesos
y otra para las correlaciones, y definiremos matemáticamente cada una por separado. Si Hp

es el hamiltoniano de los pesos y Hc es el hamiltoniano de correlaciones, podemos definir el
hamiltoniano final producido por el ordenador con la siguiente fórmula:

Hf = Hp +Hc (6.9)

El peso es la parte más sencilla del hamiltoniano. Para cada estado, se multiplicará el valor
cada cúbit (0 o 1) con su peso pi. Sumando todos los pesos, obtenemos el hamiltoniano de
pesos Hp, siendo |ψ〉i el valor del cúbit i en el estado |ψ〉:

Hp(|ψ〉) =
∑
i

pi |ψ〉i (6.10)

El hamiltoniano de enlaces es algo más complejo. Este hamiltoniano representa una corre-
lación entre dos cúbits. Si ambos cúbits miden lo mismo en el estado |ψ〉, se sumará a la
energía del estado |ψ〉 el valor de la correlación para los dos cúbits. Matemáticamente, si cij
es el valor de correlación para cada pareja de cúbits, podemos expresar Hc con esta fórmula:

Hc(|ψ〉) =
∑
i<j

cij |ψ〉i |ψ〉j (6.11)

Por lo tanto, nos queda la siguiente fórmula para el hamiltoniano final:

Hf (|ψ〉) =
∑
i

pi |ψ〉i +
∑
i<j

cij |ψ〉i |ψ〉j (6.12)

Este hamiltoniano tiene la limitación de que solo afecta a estados cuánticos que no están
en superposición, por lo que la solución obtenida siempre será un estado fundamental. Esto
significa que los ordenadores de esta arquitectura producen bits como salida, y no cúbits, por
lo que no se pueden utilizar como un paso intermedio de un algoritmo cuántico sin destruir la
información almacenada en las superposiciones. Esto limita la posibilidad de utilizar este tipo
de arquitecturas en conjunto con otras técnicas cuánticas para mejorar aun más el rendimiento
a la hora de resolver ciertos problemas.

6.3.2 Topología Chimera
Aunque esta arquitectura parezca bastante limitada, sigue permitiéndonos resolver práctica-
mente cualquier problema de optimización discreta, dado un número suficiente de cúbits con
suficientes correlaciones entre ellos. No obstante, las arquitecturas D-Wave no están limita-
das solamente por el número de cúbits del procesador, si no que también están limitadas por

64 Computación cuántica adiabática

las correlaciones se pueden establecer. La mayoría de cúbits solo se pueden conectar con un
número muy reducido de cúbits. Estas limitaciones físicas se conocen como la topología del
procesador [51].

La primera topología desarrollada por D-Wave utilizada en sus ordenadores comerciales
es la topología “Chimera”. Esta topología está basada en celdas bidimensionales de cúbits.
Una celda de tamaño n tiene n cúbits horizontales y n cúbits verticales, y cuenta con n2

correlaciones internas, de manera que cada cúbits horizontal está conectado con todos los
cúbits verticales y viceversa.

Visualmente, podemos representar una celda de la siguiente forma, siendo las filas ca-
da uno de los cúbits verticales, las columnas los cúbits horizontales y las intersecciones las
correlaciones internas de la celda:

Figura 6.6: Celda D-Wave de tamaño 4, con 8 cúbits y 16 correlaciones internas. Fuente: [51]

Las arquitecturas Chimera están formadas por celdas de tamaño 4, posicionadas en una
cuadrícula bidimensional. Además, para conectar las celdas de cúbits entre sí, también se
conectan todos los cúbits que pertenecen a la misma fila o columna adjacentes, mediante
conexiones externas entre celdas. De esta manera, un procesador de 32 cúbits de topología
Chimera tendría las siguientes correlaciones:

Figura 6.7: Correlaciones internas (verde) y externas (azul) de un Chimera de 32 cúbits. Fuente: [51]

De esta forma, cada cúbit tendrá 4 correlaciones internas, y 1 o 2 correlaciones externas. Los
cúbits que se sitúan al borde de la cuadrícula de celdas tienen 1 correlación externa, mientras
que los cúbits centrales tienen 2. En el caso ideal de que trabajásemos con un procesador de
tamaño infinito, todos los cúbits tendrían 6 correlaciones. Por lo tanto, el número máximo de
correlaciones por cúbit para este tipo de arquitecturas es 3, ya que al tener 6 correlaciones
por cúbit, como cada correlación está en dos cúbits, tenemos 3 veces más correlaciones que

6.3. Ordenadores D-Wave 65

cúbits.
Como hay 8 cúbits en cada célula de tamaño 4, para una topología Chimera de n × m

celdas tendremos 8nm cúbits. Para esa topología, tendremos también la siguiente fórmula
para calcular la cantidad de correlaciones:

c = 16nm+ 4n(m− 1) + 4m(n− 1) = 4(6ab− a− b) (6.13)

El procesador de D-Wave One utilizaba una topología Chimera, pero con una cuadrícula de
4× 4 celdas, que lo dotaba con 128 bits de potencia. Utilizando la fórmula, podemos calcular
que tiene un total de 352 correlaciones en todo el procesador. Visualmente, la arquitectura
del procesador sería la siguiente:

Figura 6.8: Visualización del procesador D-Wave One. Fuente: elaboración propia, basada en [51]

El resto de procesadores que utilizan la topología Chimera son demasiado grandes para vi-
sualizarse. No obstante, podemos calcular las correlaciones y los cúbits de sus arquitecturas:

Modelo Topología Cúbits Correlaciones Correlaciones por cúbit
D-Wave One Chimera 4× 4 128 352 5.50
D-Wave Two Chimera 8× 8 512 1472 5.75
D-Wave 2X Chimera 12× 12 1152 3360 5.83

D-Wave 2000Q Chimera 16× 16 2048 6016 5.88

Tabla 6.2: Topologías Chimera utilizadas en los procesadores D-Wave. Fuente: elaboración propia

Como se puede ver en la tabla, cuantos más cúbits mayor es la cantidad de correlaciones por
cúbits, ya que hay más cúbits centrales con 6 correlaciones. Por mucho que aumentemos los
cúbits, nunca se llegará al ideal de 6 correlaciones por cúbit, ya que en algún momento el
procesador tendrá que terminar y tendremos que tener cúbits con solo 5 correlaciones.

66 Computación cuántica adiabática

6.3.3 Topología Pegasus

Los nuevos procesadores D-Wave del modelo Advantage utilizan una topología diferente, la
topología Pegasus. En esta topología los cúbits están organizados en parejas en vez de en
celdas. Cada cúbit está conectado a 12 cúbits perpendiculares, además de estar conectado al
otro cúbit de su pareja y al siguiente y anterior cúbit paralelo.

Figura 6.9: Correlaciones de los cúbits de la topología Pegasus. Fuente: [51]

Como se puede ver en la figura anterior, el cúbit superior de la pareja 1 está conectado a
todos los cúbits de las parejas 3, 4, 5, 6, 7 y 8, a los cúbits superiores de las parejas 2 y 9, y
al otro cúbit de la pareja 1. Esto hace un total de 15 correlaciones.

Utilizando esta topología, las correlaciones máximas de un cúbit pasan de 6 a 15. Con esta
densidad de correlaciones, se podrán resolver problemas mucho más complejos sin necesidad
de utilizar cúbits adicionales, o resolver problemas similares utilizando significativamente
menos cúbits.

6.4 Aplicaciones en la inteligencia artificial

La computación adiabática, gracias a su hardware relativamente avanzado comparado con
el resto de ordenadores cuánticos, ha sido uno de los métodos que más se ha investigado
para la implementación de la computación cuántica en la inteligencia artificial. Algunos de
los algoritmos de inteligencia artificial para los que se ha conseguido utilizar la computación
adiabática son los siguientes:

• Clasificadores binarios [53]

6.4. Aplicaciones en la inteligencia artificial 67

• Máquinas de vectores de soporte (support-vector machines, SVMs) [54]

• Redes neuronales embebidas en hardware [55]

La computación adiabática, dado su avance tecnológico comparado con los ordenadores cuán-
ticos basados en puertas lógicas, probablemente sea una de las primeras implementaciones de
la computación cuántica que se aplicarán a la inteligencia artificial. Aunque con ordenadores
cuánticos basados en puertas se pueden incorporar muchas mejoras adicionales, la imple-
mentación de evolución adiabática en el entrenamiento de modelos de inteligencia artificial
modernos podría constituir una gran reducción en la cantidad de tiempo y recursos necesarios
para completar el entrenamiento de dichos modelos.

7 Conclusiones

Como se ha podido ver durante el desarrollo de este trabajo, la computación cuántica po-
dría suponer un increíble beneficio para la inteligencia artificial. Ya sea mediante mejores
algoritmos o mediante técnicas que permiten disminuir drásticamente el tiempo y los recur-
sos necesarios, la computación cuántica podría suponer una revolución para la inteligencia
artificial.

La implementación de muchas de las mejoras estudiadas es muy compleja. La naturaleza
de los ordenadores cuánticos requiere que, para su implementación, aprovechemos sus pro-
piedades y ventajas específicas, que son muy diferentes de las propiedades de los ordenadores
actuales. No obstante, el posible beneficio de las mejoras estudiadas es tan grande, que un
cambio radical en la manera en la que programamos es un coste aceptable.

El mayor obstáculo actual es el tecnológico. Los ordenadores cuánticos actuales y su hard-
ware es muy caro de fabricar, ya que requiere de componentes muy especializados y precisos;
y también es caro de operar, ya que normalmente los ordenadores cuánticos se tienen que
mantener a temperaturas muy cercanas al cero absoluto [56]. Además, se requieren de equipos
especializados para su uso y mantenimiento. Todos estos factores hacen que los ordenadores
cuánticos actuales cuesten decenas de millones de dólares para ser adquiridos, y varios mi-
llones de dólares por año para su mantenimiento y uso [57]. Esto los hace prohibitivos en la
mayoría de aplicaciones comerciales, haciendo que actualmente se suelan utilizar exclusiva-
mente para la investigación.

No hay duda que si se consigue mitigar los costes tecnológicos, la computación cuántica
podría suponer un antes y un después en el entrenamiento y ejecución de los modelos de
inteligencia artificial. Esta reducción de costes y tiempo de entrenamiento podría suponer el
abaratamiento del desarrollo de modelos de potencia similar a los modelos actuales, y también
podría hacer viable el entrenamiento de modelos mucho más potentes a los actuales, sin la
necesidad de incrementar exageradamente el coste y/o tiempo de entrenamiento.

7.1 Aportaciones
Las aportaciones de este TFG con las siguientes:

• Estudio de la computación cuántica aplicada a la IA: Se han explorado diversas apli-
caciones de la computación cuántica aplicadas a la inteligencia artificial, priorizando
aquellas con mayor beneficio potencial o con más desarrollo previo e implementaciones
físicas.

• Explicación de la computación cuántica y la inteligencia artificial: se ha explicado en
detalle muchos de los conceptos fundamentales de la computación cuántica y la IA
necesarios para entender el resto del trabajo realizado.

69

70 Conclusiones

• Análisis de algoritmos de multiplicación de matrices: Se han evaluado varios algoritmos,
tanto clásicos como cuánticos, para la multiplicación de matrices. Se ha hecho notar
que el algoritmo cuántico basado en swap tests tiene una complejidad cuadrática, lo
cual es significativamente menor que los mejores algoritmos clásicos disponibles.

• Comparación de complejidades de algoritmos de matrices: Se ha realizado un análisis
comparativo de las complejidades de diferentes algoritmos de multiplicación de matrices,
destacando la ventaja del algoritmo cuántico en términos de eficiencia.

• Análisis de la búsqueda de Grover: se ha realizado una breve explicación y un desarrollo
de la búsqueda de Grover, junto con un pequeño análisis de los posibles beneficios
que la misma podría traer a la inteligencia artificial. También se han investigado las
posibles aplicaciones de la misma, viendo algunas implementaciones que han conseguido
aprovecharla para mejorar la eficiencia de entrenamiento y aprendizaje.

• Estudio de la computación cuántica adiabática: se han investigado las posibles apli-
caciones de la computación adiabática, explicando en detalle ciertos conceptos funda-
mentales necesarios para su entendimiento. Se ha destacado su particular utilidad en
problemas de optimización y satisfacibilidad, y se han investigado sus posibles aplicacio-
nes en la IA. También se han analizado algunos ordenadores y procesadores adiabáticos
comerciales, estudiando su arquitectura y topología.

Estas contribuciones muestran un esfuerzo significativo por entender y mejorar la integra-
ción de la computación cuántica con la inteligencia artificial, resaltando tanto las ventajas
potenciales como los desafíos actuales

7.2 Posibles ampliaciones
Durante la realización de este trabajo se han analizado y estudiado ciertas aplicaciones de
la computación cuántica aplicadas a la inteligencia artificial. Como se explicó en el apartado
1.2, se han priorizado las aplicaciones más interesantes, que podrían tener mayor beneficio o
que dispongan de mayor cantidad de estudios o de implementaciones físicas.

A continuación se enumeran algunas de las aplicaciones que no se han analizado, junto con
un pequeño resumen de su posible uso en la inteligencia artificial y la razón de porqué no se
han analizado:

• Convoluciones cuánticas: el uso de circuitos cuánticos para implementar convoluciones
de matrices. Su implementación beneficiaría a las redes neuronales convolucionales, que
se utilizan para el procesamiento de imágenes, audio y vídeo, entre otros usos. No se ha
analizado ya que sería una versión menos general y con menos beneficios que el análisis
ya realizado para los algoritmos de multiplicación de matrices, que se aplican a todas
las redes neuronales y no solo a las convolucionales.

• Redes neuronales cuánticas (Quantum Neural Networks, QNNs): se trata de implemen-
tar redes neuronales completamente con ordenadores cuánticos, incluyendo la ejecución
entera de la red y posiblemente el entrenamiento de la misma. Su implementación po-
dría ahorrar un gran coste en los ordenadores cuánticos, la inicialización de los estados,

7.2. Posibles ampliaciones 71

ya que al procesar datos de forma completamente cuántica solo tendrían que iniciali-
zarse una vez. No se ha analizado debido a que no existen implementaciones de este
concepto que no sean con redes neuronales muy pequeñas, y que aún no existen estudios
sobre si es posible implementar todas las operaciones necesarias para el funcionamiento
de una red neuronal de forma eficiente con ordenadores cuánticos.

• Codificación en amplitudes (Amplitude encoding): consiste en realizar operaciones codi-
ficando los valores de la operación en las amplitudes en vez de los estados. Esto, aunque
supone una mayor complejidad de cálculo y mucha más inestabilidad numérica, podría
suponer un gran ahorro de tiempo, ya que permite hacer muchísimas operaciones en
paralelo. No se ha analizado ya que, aunque en teoría se puedan realizar operaciones
con esta codificación, solo se ha conseguido implementar en casos muy concretos, y no
está claro aún que se pueda aplicar a la IA de forma general en entornos reales.

Bibliografía
[1] Tim Davis, “Explainer: what is wave-particle duality.” https://theconversation.com/

explainer-what-is-wave-particle-duality-7414. Accedido: 30/3/2024.

[2] Sheroy Cooper, “Quantum superposition - explained
simply and in-depth.” https://medium.com/@sheroy.cooper/
quantum-superposition-explained-simply-and-in-depth-82736420a939. Ac-
cedido: 30/3/2024.

[3] Jesse Emspak, “What is quantum entanglement?.” https://www.space.com/
31933-quantum-entanglement-action-at-a-distance.html. Accedido: 30/3/2024.

[4] Nanowerk, “What are quantum dots?.” https://www.nanowerk.com/what_are_
quantum_dots.php. Accedido: 31/3/2024.

[5] Wikipedia, “Qubit: Physical implementations.” https://en.wikipedia.org/wiki/
Qubit#Physical_implementations. Accedido: 29/3/2024.

[6] P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits,
qutrits and ququads accurately prepared and delivered on demand.” https://arxiv.
org/abs/1203.5614. Accedido: 7/5/2024.

[7] Brain_Boost, “Quantum mechanics: What is bra-ket notation?.” https://medium.com/
@Brain_Boost/quantum-mechanics-what-is-bra-ket-notation-a69b505f9cc4. Ac-
cedido: 31/3/2024.

[8] Quantiki, “Hilbert spaces.” https://www.quantiki.org/wiki/hilbert-spaces. Acce-
dido: 31/3/2024.

[9] Scott Aaronson, “Why are amplitudes complex?.” https://scottaaronson.blog/?p=
4021. Accedido: 31/3/2024.

[10] Kim Thibault, “Euler’s formula: A complete guide.” https://mathvault.ca/
euler-formula/. Accedido: 31/3/2024.

[11] Pranav Viswanath, “Quantum states and the bloch sphere.” https://medium.com/
quantum-untangled/quantum-states-and-the-bloch-sphere-9f3c0c445ea3. Acce-
dido: 1/4/2024.

[12] Wolfram Mathworld, “Spherical coordinates.” https://mathworld.wolfram.com/
SphericalCoordinates.html. Accedido: 1/4/2024.

[13] Daniel Winton, “What are bell states?.” https://www.aliroquantum.com/blog/
what-are-bell-states. Accedido: 1/4/2024.

73

https://theconversation.com/explainer-what-is-wave-particle-duality-7414
https://theconversation.com/explainer-what-is-wave-particle-duality-7414
https://medium.com/@sheroy.cooper/quantum-superposition-explained-simply-and-in-depth-82736420a939
https://medium.com/@sheroy.cooper/quantum-superposition-explained-simply-and-in-depth-82736420a939
https://www.space.com/31933-quantum-entanglement-action-at-a-distance.html
https://www.space.com/31933-quantum-entanglement-action-at-a-distance.html
https://www.nanowerk.com/what_are_quantum_dots.php
https://www.nanowerk.com/what_are_quantum_dots.php
https://en.wikipedia.org/wiki/Qubit#Physical_implementations
https://en.wikipedia.org/wiki/Qubit#Physical_implementations
https://arxiv.org/abs/1203.5614
https://arxiv.org/abs/1203.5614
https://medium.com/@Brain_Boost/quantum-mechanics-what-is-bra-ket-notation-a69b505f9cc4
https://medium.com/@Brain_Boost/quantum-mechanics-what-is-bra-ket-notation-a69b505f9cc4
https://www.quantiki.org/wiki/hilbert-spaces
https://scottaaronson.blog/?p=4021
https://scottaaronson.blog/?p=4021
https://mathvault.ca/euler-formula/
https://mathvault.ca/euler-formula/
https://medium.com/quantum-untangled/quantum-states-and-the-bloch-sphere-9f3c0c445ea3
https://medium.com/quantum-untangled/quantum-states-and-the-bloch-sphere-9f3c0c445ea3
https://mathworld.wolfram.com/SphericalCoordinates.html
https://mathworld.wolfram.com/SphericalCoordinates.html
https://www.aliroquantum.com/blog/what-are-bell-states
https://www.aliroquantum.com/blog/what-are-bell-states

74 Bibliografía

[14] Quantum Physics Lady, “Quantum nonlocality.” https://quantumphysicslady.org/
glossary/quantum-nonlocality/. Accedido: 1/4/2024.

[15] Marco Taboga, “Linear independence.” https://www.statlect.com/matrix-algebra/
linear-independence. Accedido: 1/4/2024.

[16] Wikipedia, “Quantum logic gate: Logic function synthesis.” https://en.wikipedia.
org/wiki/Quantum_logic_gate#Logic_function_synthesis. Accedido: 1/4/2024.

[17] Wikipedia, “Deferred measurement principle.” https://en.wikipedia.org/wiki/
Deferred_measurement_principle. Accedido: 1/4/2024.

[18] IBM, “What is overfitting?.” https://www.ibm.com/topics/overfitting. Accedido:
1/4/2024.

[19] IBM, “¿que es el aprendizaje no supervisado?.” https://www.ibm.com/es-es/topics/
unsupervised-learning. Accedido: 1/4/2024.

[20] AWS, “¿qué es el aprendizaje mediante refuerzo?.” https://aws.amazon.com/es/
what-is/reinforcement-learning/. Accedido: 1/4/2024.

[21] DataScientest, “Perceptrón: ¿qué es y para qué sirve?.” https://datascientest.com/
es/perceptron-que-es-y-para-que-sirve. Accedido: 7/5/2024.

[22] Joaquín Amat Rodrigo, “Algoritmo perceptrón: linealmente separable.” https:
//cienciadedatos.net/documentos/50_algoritmo_perceptron#linealmente_
separable, 2018. Accedido: 24/3/2024.

[23] Joaquín Amat Rodrigo, “Algoritmo perceptrón: hiperplano.” https://cienciadedatos.
net/documentos/50_algoritmo_perceptron#hiperplano, 2018. Accedido: 24/3/2024.

[24] W3 Schools, “Training a perceptron.” https://www.w3schools.com/ai/ai_training.
asp. Accedido: 23/3/2024.

[25] Michael Nielsen, “Neural networks and deep learning: proof of the four fundamen-
tal equations.” http://neuralnetworksanddeeplearning.com/chap2.html#proof_
of_the_four_fundamental_equations_(optional), 2019. Accedido: 24-3-2024.

[26] Michael Nielsen, “Neural networks and deep learning: the four fundemental
equations behind backpropagation.” http://neuralnetworksanddeeplearning.com/
chap2.html#the_four_fundamental_equations_behind_backpropagation, 2019. Ac-
cedido: 24/3/2024.

[27] “Keras: optimizers.” https://keras.io/api/optimizers/rmsprop/. Accedido:
24/3/2024.

[28] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13,
pp. 354–356, 1969.

[29] J. Huang, T. Smith, G. Henry, and R. van de Geijn, “Strassen’s algorithm reloaded.”
https://jianyuhuang.com/papers/sc16.pdf, 2016. Accedido: 7/5/2024.

https://quantumphysicslady.org/glossary/quantum-nonlocality/
https://quantumphysicslady.org/glossary/quantum-nonlocality/
https://www.statlect.com/matrix-algebra/linear-independence
https://www.statlect.com/matrix-algebra/linear-independence
https://en.wikipedia.org/wiki/Quantum_logic_gate#Logic_function_synthesis
https://en.wikipedia.org/wiki/Quantum_logic_gate#Logic_function_synthesis
https://en.wikipedia.org/wiki/Deferred_measurement_principle
https://en.wikipedia.org/wiki/Deferred_measurement_principle
https://www.ibm.com/topics/overfitting
https://www.ibm.com/es-es/topics/unsupervised-learning
https://www.ibm.com/es-es/topics/unsupervised-learning
https://aws.amazon.com/es/what-is/reinforcement-learning/
https://aws.amazon.com/es/what-is/reinforcement-learning/
https://datascientest.com/es/perceptron-que-es-y-para-que-sirve
https://datascientest.com/es/perceptron-que-es-y-para-que-sirve
https://cienciadedatos.net/documentos/50_algoritmo_perceptron#linealmente_separable
https://cienciadedatos.net/documentos/50_algoritmo_perceptron#linealmente_separable
https://cienciadedatos.net/documentos/50_algoritmo_perceptron#linealmente_separable
https://cienciadedatos.net/documentos/50_algoritmo_perceptron#hiperplano
https://cienciadedatos.net/documentos/50_algoritmo_perceptron#hiperplano
https://www.w3schools.com/ai/ai_training.asp
https://www.w3schools.com/ai/ai_training.asp
http://neuralnetworksanddeeplearning.com/chap2.html#proof_of_the_four_fundamental_equations_(optional)
http://neuralnetworksanddeeplearning.com/chap2.html#proof_of_the_four_fundamental_equations_(optional)
http://neuralnetworksanddeeplearning.com/chap2.html#the_four_fundamental_equations_behind_backpropagation
http://neuralnetworksanddeeplearning.com/chap2.html#the_four_fundamental_equations_behind_backpropagation
https://keras.io/api/optimizers/rmsprop/
https://jianyuhuang.com/papers/sc16.pdf

Bibliografía 75

[30] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,”
Journal of Symbolic Computation, vol. 9, no. 3, pp. 251–280, 1990. Computational
algebraic complexity editorial.

[31] V. V. Williams, Y. Xu, Z. Xu, and R. Zhou, “New bounds for matrix multiplication: from
alpha to omega.” https://arxiv.org/abs/2307.07970, 2023. Accedido: 7/5/2024.

[32] C. Shao, “Quantum algorithms to matrix multiplication.” https://arxiv.org/abs/
1803.01601, 2018. Accedido: 7/5/2024.

[33] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, 2010.

[34] A. Zaman, H. J. Morrell, and H. Y. Wong, “A step-by-step hhl algorithm walkthrough to
enhance understanding of critical quantum computing concepts.” https://arxiv.org/
abs/2108.09004, 2023.

[35] Alessandro Luongo, “Quantum algorithms: Sve-based quantum al-
gorithms.” https://quantumalgorithms.org/chap-svebased.html#
spectral-norm-and-the-condition-number-estimation, 2023. Accedido:
25/3/2024.

[36] Maxime, “What is a transformer?.” https://medium.com/inside-machine-learning/
what-is-a-transformer-d07dd1fbec04, 2019. Accedido: 25/3/2024.

[37] L. K. Grover, “A fast quantum mechanical algorithm for database search.” https://
arxiv.org/abs/quant-ph/9605043, 1996. Accedido: 4/4/2024.

[38] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and weaknesses
of quantum computing.” https://arxiv.org/abs/quant-ph/9701001, 1997. Accedido:
4/4/2024.

[39] Nathan Wiebe and Ashish Kapoor and Krysta Svore, “Quantum algorithms for nearest-
neighbor methods for supervised and unsupervised learning.” https://arxiv.org/abs/
1401.2142, 2014. Accedido: 3/4/2024.

[40] Esma Aïmeur and Gilles Brassard and Sébastien Gambs, “Quantum speed-
up for unsupervised learning.” https://link.springer.com/article/10.1007/
s10994-012-5316-5, 2012. Accedido: 3/4/2024.

[41] Y. Gao, Z. Song, X. Yang, and R. Zhang, “Fast quantum algorithm for attention compu-
tation.” https://arxiv.org/abs/2307.08045, 2023. Accedido: 3/4/2024.

[42] G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-Delgado, and H. J. Briegel, “Quan-
tum speedup for active learning agents.” https://arxiv.org/abs/2307.08045, 2014.
Accedido: 3/4/2024.

[43] N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum perceptron models.” https://arxiv.
org/abs/1401.4997, 2016. Accedido: 3/4/2024.

https://arxiv.org/abs/2307.07970
https://arxiv.org/abs/1803.01601
https://arxiv.org/abs/1803.01601
https://arxiv.org/abs/2108.09004
https://arxiv.org/abs/2108.09004
https://quantumalgorithms.org/chap-svebased.html#spectral-norm-and-the-condition-number-estimation
https://quantumalgorithms.org/chap-svebased.html#spectral-norm-and-the-condition-number-estimation
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9701001
https://arxiv.org/abs/1401.2142
https://arxiv.org/abs/1401.2142
https://link.springer.com/article/10.1007/s10994-012-5316-5
https://link.springer.com/article/10.1007/s10994-012-5316-5
https://arxiv.org/abs/2307.08045
https://arxiv.org/abs/2307.08045
https://arxiv.org/abs/1401.4997
https://arxiv.org/abs/1401.4997

76 Bibliografía

[44] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation by adiabatic
evolution.” https://arxiv.org/abs/quant-ph/0001106, 2000. Accedido: 7/5/2024.

[45] T. Kato, “On the adiabatic theorem of quantum mechanics,” 1950.

[46] S. Zbinden, A. Bärtschi, H. Djidjev, and S. Eidenbenz, “Embedding algorithms for quan-
tum annealers with chimera and pegasus connection topologies,” in High Performance
Computing (P. Sadayappan, B. L. Chamberlain, G. Juckeland, and H. Ltaief, eds.),
(Cham), pp. 187–206, Springer International Publishing, 2020.

[47] N. Atlas, “Harvard researchers fold proteins with d-wave quantum computer.”
https://newatlas.com/harvard-d-wave-quantum-computer/25558/, 2012. Accedi-
do: 5/4/2024.

[48] E. D. Dahl and V. Goliber, “Hardware and software advances in quantum an-
nealing.” https://www.suny.edu/media/suny/content-assets/images/research/
events/Hardware-Software-Advances-in-Quantum-Annealing-DWaveSlides-Dahl_
Goliber.pdf, 2019. Accedido: 5/4/2024.

[49] Wikipedia, “D-wave systems.” https://en.wikipedia.org/wiki/D-Wave_Systems.
Accedido: 12/5/2024.

[50] J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch, “Benchmarking a
quantum annealing processor with the time-to-target metric,” 2015.

[51] “D-wave qpu architecture: Topologies.” https://docs.dwavesys.com/docs/latest/c_
gs_4.html. Accedido: 8/3/2024.

[52] “D-wave qpu annealing implementation and controls.” https://docs.dwavesys.com/
docs/latest/c_qpu_annealing.html. Accedido: 8/3/2024.

[53] H. Neven, M. Drew-Brook, W. G. Macready, V. S. Denchev, J. Zhang, and G. Ro-
se, “Nips 2009 demonstration: Binary classification using hardware implementation of
quantum annealing.” https://static.googleusercontent.com/media/www.google.
com/de//googleblogs/pdfs/nips_demoreport_120709_research.pdf, 2009. Accedi-
do: 5/4/2024.

[54] Z. Li, X. Liu, N. Xu, and J. Du, “Experimental realization of a quantum support vector
machine.” https://arxiv.org/abs/1410.1054, 2015. Accedido: 5/4/2024.

[55] M. Benedetti, J. Realpe-Gómez, R. Biswas, and A. Perdomo-Ortiz, “Quantum-assisted
learning of hardware-embedded probabilistic graphical models.” https://arxiv.org/
abs/1609.02542, 2017. Accedido: 5/4/2024.

[56] Kiutra, “Quantum computer temperature: Do they need to be cold?.” https://kiutra.
com/quantum-computer-temperature-do-they-need-to-be-cold/, 2023. Accedido:
28/4/2024.

[57] J. Dargan, “What is the price of a quantum computer in 2024?.” https://
thequantuminsider.com/2023/04/10/price-of-a-quantum-computer/, 2023. Acce-
dido: 28/4/2024.

https://arxiv.org/abs/quant-ph/0001106
https://newatlas.com/harvard-d-wave-quantum-computer/25558/
https://www.suny.edu/media/suny/content-assets/images/research/events/Hardware-Software-Advances-in-Quantum-Annealing-DWaveSlides-Dahl_Goliber.pdf
https://www.suny.edu/media/suny/content-assets/images/research/events/Hardware-Software-Advances-in-Quantum-Annealing-DWaveSlides-Dahl_Goliber.pdf
https://www.suny.edu/media/suny/content-assets/images/research/events/Hardware-Software-Advances-in-Quantum-Annealing-DWaveSlides-Dahl_Goliber.pdf
https://en.wikipedia.org/wiki/D-Wave_Systems
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://docs.dwavesys.com/docs/latest/c_qpu_annealing.html
https://docs.dwavesys.com/docs/latest/c_qpu_annealing.html
https://static.googleusercontent.com/media/www.google.com/de//googleblogs/pdfs/nips_demoreport_120709_research.pdf
https://static.googleusercontent.com/media/www.google.com/de//googleblogs/pdfs/nips_demoreport_120709_research.pdf
https://arxiv.org/abs/1410.1054
https://arxiv.org/abs/1609.02542
https://arxiv.org/abs/1609.02542
https://kiutra.com/quantum-computer-temperature-do-they-need-to-be-cold/
https://kiutra.com/quantum-computer-temperature-do-they-need-to-be-cold/
https://thequantuminsider.com/2023/04/10/price-of-a-quantum-computer/
https://thequantuminsider.com/2023/04/10/price-of-a-quantum-computer/

	Introducción
	Objetivos
	Metodología
	Estructura del trabajo

	Computación cuántica
	Fundamentos físicos de la computación cuántica
	Sistemas físicos de los ordenadores cuánticos
	Notación bra-ket
	Kets
	Bras
	Sistemas compuestos

	Bits cuánticos
	Midiendo bits cuánticos
	Fase global
	Esfera de Bloch
	Múltiples cúbits
	Entrelazamiento de cúbits

	Notación vectorial

	Puertas lógicas cuánticas
	Puertas de Pauli
	Puerta Hadamard
	Puertas de cambio de base

	Puertas de desplazamiento de fase
	Puerta SWAP
	Puertas controladas
	Puerta Toffoli
	Puerta CZ
	Puertas de desplazamiento de fase controladas
	Puerta CSWAP

	Puertas compuestas
	Puertas con exponentes
	Puertas en paralelo

	Circuitos cuánticos
	Cables cuánticos
	Puertas en circuitos cuánticos
	Puertas X, CX y Toffoli
	Puerta CZ
	Puertas SWAP y CSWAP

	Medidores

	Inteligencia artificial
	Neuronas artificiales
	Perceptrón

	Redes neuronales artificiales
	Entrenamiento
	Backpropagation
	Descenso por gradiente

	Algoritmos de multiplicación de matrices
	Algoritmos clásicos
	Algoritmo de Strassen
	Algoritmo de Coppersmith-Winograd

	Algoritmos cuánticos
	Por test de intercambio (swap test)
	Otros algoritmos

	Análisis teórico de las complejidades
	Conclusiones del análisis

	Búsqueda de Grover
	Algoritmo de Grover
	Inicialización
	Búsqueda
	Inversión sobre la media
	Iteraciones
	Algoritmo completo

	Aplicaciones en la inteligencia artificial

	Computación cuántica adiabática
	Algoritmo de evolución adiabática
	Evolución adiabática aproximada

	Problemas de satisfacibilidad
	Ordenadores D-Wave
	Arquitectura D-Wave
	Topología Chimera
	Topología Pegasus

	Aplicaciones en la inteligencia artificial

	Conclusiones
	Aportaciones
	Posibles ampliaciones

	Bibliografía

