Trabajo Fin de Grado

Autor:

Vicent Baeza Esteve

Tutor/es:

Francisco Antonio Pujol Lopez

g Universitat d’Alacant

Universidad de Alicante

Mayo 2024

Computacién Cuantica y sus
aplicaciones en Inteligencia Artificial

Estudio sobre la computacion cuantica y sus aplicaciones en la
inteligencia artificial

Autor
Vicent Baeza Esteve

Tutor/es

Francisco Antonio Pujol Lopez
Departamento de Tecnologia Informdtica y Computacion

Grado en Ingenieria Informatica

Escuela Universitat d’Alacant
AR niversita acan
POl'teCfn'Ca = Universidad de Alicante
1/ Superior

ALICANTE, Mayo 2024

Resumen

Actualmente, las demandas computacionales de los algoritmos de inteligencia artificial estan
creciendo a un ritmo veloz. Los modelos mas potentes de inteligencia artificial actuales re-
quieren de una cantidad de computo impresionante para ser entrenados y ejecutados. Con
las tendencias actuales esta demanda de recursos no hard més que crecer en los préximos
anos, agravando atn maés el problema que supone entrenar y ejecutar este tipo de modelos
de inteligencia artificial.

Una de las posibles soluciones a este problema es el uso de la computacién cuantica, una
rama de la computacién que utiliza ciertas propiedades de la fisica cudntica para acelerar
y mejorar la eficiencia de ciertos algoritmos. Mediante el uso de ordenadores y procesado-
res especializados que exploten estas propiedades, se pueden disenar algoritmos para ciertos
problemas que reducen la complejidad computacional y, por lo tanto, las demandas compu-
tacionales.

En este trabajo se analizaran los elementos béasicos de la computacion cuantica y sus apli-
caciones principales orientadas a la inteligencia artificial. Para cada una de las aplicaciones
analizadas, también se estudiard su posible impacto en la eficiencia y eficacia, y algunas de
las implementaciones actuales que la utilicen.

Indice general

1

Introduccién

1.1 Objetivos« o e
1.2 Metodologia e
1.3 Estructura del trabajo Lo

Computacion cuantica

2.1

2.2

2.3

24

Fundamentos fisicos de la computacién cudntica
2.1.1 Sistemas fisicos de los ordenadores cuanticos
2.1.2 Notacion bra-ket
2.1.21 Kets o e e
2.1.22 Bras e e e e e
2.1.2.3 Sistemas compuestos
Bits cudnticos L
2.2.1 Midiendo bits cudnticos
2.2.2 Faseglobal
2.2.3 EsferadeBloch
2.2.4 Multiples ciibits Lo
2.2.4.1 Entrelazamiento de cubits.
2.2.5 Notacién vectorial
Puertas logicas cudnticas Lo Lo
2.3.1 PuertasdePauli
2.3.2 Puerta Hadamard,
2.3.2.1 Puertas de cambiode base
2.3.3 Puertas de desplazamiento de fase,
2.3.4 PuertaSWAP.
2.3.5 Puertas controladas oo
2.3.5.1 Puerta Toffoli,
2.3.5.2 PuertaCZ
2.3.5.3 Puertas de desplazamiento de fase controladas
2.3.5.4 Puerta CSWAP
2.3.6 Puertas compuestas o
2.3.6.1 Puertas con exponentes
2.3.6.2 Puertasen paralelo 0L,
Circuitos cudnticos e
2.4.1 Cables cuanticos
2.4.2 Puertas en circuitos cuanticos
2.4.2.1 Puertas X, CX y Toffoli
2.4.2.2 Puerta CZ
2.4.2.3 Puertas SWAPy CSWAP

N DN

Q0 00 1 O O UL UL i i W W

DODNDNDNDNDNDNNDNDNDNDN R H == = =
SO N R WNNNRFR P OO0 Ttwhh+~OOo

vii

viii

INDICE GENERAL

24.3 Medidoreso o

3 Inteligencia artificial

3.1 Neuronas artificiales
3.1.1 Perceptrono
3.2 Redes neuronales artificiales
3.3 Entrenamiento
3.3.1 Backpropagation
3.3.2 Descenso por gradiente

4 Algoritmos de multiplicacién de matrices

4.1 Algoritmos cldsicoso
4.1.1 Algoritmo de Strassen
4.1.2 Algoritmo de Coppersmith-Winograd

4.2 Algoritmos cudnticos
4.2.1 Por test de intercambio (swap test)
4.2.2 Otros algoritmos

4.3 AnAlisis tedrico de las complejidades
4.3.1 Conclusiones del analisis

5 Buasqueda de Grover

5.1 Algoritmo de Grover
5.1.1 Inicializacion
512 Busqueda00
5.1.3 Inversion sobre la media
5.1.4 Tteraciones
5.1.5 Algoritmo completo
5.2 Aplicaciones en la inteligencia artificial

6 Computacion cuantica adiabatica

6.1 Algoritmo de evolucién adiabdtica
6.1.1 Evolucién adiabatica aproximada
6.2 Problemas de satisfacibilidad
6.3 Ordenadores D-Wave
6.3.1 Arquitectura D-Wave
6.3.2 Topologia Chimera
6.3.3 Topologia Pegasus
6.4 Aplicaciones en la inteligencia artificial

7 Conclusiones

7.1 Aportaciones
7.2 Posibles ampliacioneso

Bibliografia

Indice de figuras

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
9.5
5.6
5.7

6.1
6.2
6.3
6.4

Representacién de un vector ¥ en la esfera de Bloch 9
Puerta X en la esferade Bloch 13
Puerta Yen la esferade Bloch 14
Puerta Zen la esfera de Bloch 14
Puerta Hen la esferade Bloch 15
Circuito cuantico con tres cables de 1, 3 y ncabits 24
Circuito con un cable de cubits (arriba) y de bits (abajo) 25
Circuito cuantico con varias puertas logicas 25
Circuito cuantico con las puertas CY, CCH, CSy CBell 25
Circuito con X (izquierda), CX (centro) y Toffoli (derecha) 26
Circuito cudntico con una puerta CZ 26
Circuito con SWAP (izquierda) y CSWAP (derecha) 26
Circuito cuantico con un medidor L. 27
Circuito con C'H, un medidor y H con control clasico 27
Visualizacién de una neurona con 3 entradas 30
Representacion gréafica de algunas funciones de activacion 31
Representacién grafica de un perceptréon en R 31
Algoritmo de aprendizaje para un perceptréon 33
Red con 3 neuronas de entrada, 4 ocultas y 2 desalida 33
Red neuronal con 1 capa de entrada, 2 ocultas y 1 de salida 35
Algoritmo iterativo de multiplicacion de matrices 39
Algoritmo de Strassen 41
Circuito para una iteracion de Swap test de 1 cubit 43
Circuito para una iteraciéon de Swap test de n cubits 45
Algoritmo de multiplicacién de matrices basado en Swap test 46
Inicializacién de una busqueda de Grover para 8 elementos. 50
Amplitudes tras aplicar Ug en una busqueda de Grover 51
Amplitudes tras 1 iteracién del algoritmo de Grover 52
Circuito cuantico para el algoritmo de Grover 52
Amplitudes de una buisqueda de Grover del estado [010) 53
Algoritmo de Grover para M conocida o oL 54
Algoritmo de Grover para M no conocida 55
Hamiltoniano que resuelve un problema de optimizacién 57
Evolucién adiabatica de H; a Hy pasando por H, 58
Hamiltonianos finales para un problema de satisfacibilidad 60
Imagen de un ordenador D-Wave One 61

ix

fNDICE DE FIGURAS

6.5
6.6
6.7
6.8
6.9

Temperaturas de cada placa de refrigeracion de un ordenador D-Wave 62
Celda D-Wave de tamano 4, con 8 cibits y 16 correlaciones internas 64
Correlaciones internas (verde) y externas (azul) de un Chimera de 32 cibits . 64
Visualizaciéon del procesador D-Wave One 65

Correlaciones de los cubits de la topologia Pegasus 66

Indice de tablas

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

4.1
4.2
4.3
4.4
4.5

6.1
6.2

Sistemas fisicos en la computacion cuantica 4
Efectos de las puertas X, Y y Z 15
Efectos de la puerta H 16
Efectos de las puertas de desplazamiento de fase 17
Efectos de la puerta SWAP 18
Efectos de la puerta CXo 18
Efectos de la puerta CU 19
Efectos de la puerta Toffoli 20
Efectos de la puerta C'Z 21
Efectos de las puertas de desplazamiento de fase controladas 21
Efectos de la puerta CSWAP 22
Resultado de un Swap test de 1 cubit respecto a [¢,) 44
Complejidades de los algoritmos estudiados 47
Tamaino de embedding de los modelos analizados 47
Estimacion del coste de ejecuciéon de los algoritmos estudiados 48
Coste de ejecucion respecto al algoritmo iterativo 48
Ordenadores adiabaticos D-Wave 62
Topologias Chimera utilizadas en los procesadores D-Wave 65

Xi

1 Introduccion

La computacién cuantica es un campo que nacié en los anos 80, como posible solucién al
rapido incremento de las demandas de procesamiento incurridas por los ordenadores de la
época. Treinta anos més tarde, esa demanda no ha hecho mas que crecer. Uno de los campos
que mas ha hecho crecer esta demanda es la inteligencia artificial, que requiere de cantidades
inmensas de datos y procesamiento para entrenar modelos de inteligencia artificial que resuel-
van adecuadamente problemas muy complejos pero muy utiles, como el reconocimiento de
iméagenes y video, el procesamiento de lenguaje natural o la detecciéon de patrones o similitu-
des. Las grandes demandas de datos han hecho que actualmente sea necesario tener grandes
conjuntos de ordenadores o superordenadores para entrenar los modelos més sofisticados.

Ante las crecientes demandas computacionales de la inteligencia artificial, la computacion
cuadntica podria suponer un cambio de paradigma total, ya que muchas de las técnicas que
veremos a continuaciéon pueden suponer grandes mejoras en la eficiencia y eficacia a la hora
de desarrollar, entrenar y ejecutar modelos de inteligencia artificial. El aprovechamiento de
ciertas propiedades de la fisica cudntica hace que sea posible el desarrollo de mejores algo-
ritmos y técnicas de lo que seria posible con ordenadores clasicos. Explicaremos en detalle
mas adelante muchas de estas técnicas, sus implementaciones actuales y su posible uso en el
futuro cercano.

La computaciéon cuantica supone un cambio de paradigma casi total respecto a la compu-
tacién clasica. La manera de representar informacién, el procesamiento y depuracion de datos,
la l6gica cuantica y sus puertas logicas correspondientes y los circuitos cudnticos difieren mu-
cho de sus equivalentes en los ordenadores actuales. Es por esto que su integracién, aunque
pueda reducir el coste temporal de la inteligencia artificial masivamente, haya sido reducida
actualmente. No obstante, con el constante desarrollo tecnolégico y algoritmico de la compu-
tacion cudntica, su uso en la inteligencia artificial cada vez se estd volviendo més y mas
comun.

1.1 Objetivos

En este apartado se enumeran los objetivos concretos que se han tenido en cuenta durante el
desarrollo de este trabajo.

o Analizar diferentes técnicas de la computaciéon cudntica y el beneficio potencial que
puede suponer su integracion en la inteligencia artificial

« Estudiar los problemas especificos que supone la computacién cudntica y las posibles
soluciones a estos problemas

e Analizar casos de uso que verifiquen la validez del estudio realizado

2 INTRODUCCION

1.2 Metodologia

Para la realizacién de este TFG, se han analizado las aplicaciones y casos de uso que se han
considerado mas relevantes a la hora de integrar la inteligencia artificial con la computacién
cuantica. Como la computacién cudntica es un campo emergente, no estd del todo claro
cudles de sus muchas aplicaciones seran las mas tutiles a la hora de aplicarlas a la inteligencia
artificial en el futuro. Se han priorizado las aplicaciones con mayor posible beneficio, asi como
las “desarrolladas”, es decir, las que tienen una mayor cantidad de estudios anteriores y de
implementaciones fisicas.

En base al criterio anterior, se han analizado 3 aplicaciones: los algoritmos de multiplicacion
de matrices cudnticos (capitulo 4), la bisqueda de Grover (capitulo 5) y la computacién
adiabatica cuantica (capitulo 6).

1.3 Estructura del trabajo

A continuacion se describe la estructura del trabajo, junto con un breve resumen del contenido
de cada capitulo.

e Capitulo 2: Computacién cuantica: introduce al lector a la computacién cuéntica.
Se explican los fundamentos fisicos de la computacion cuantica, estados cuanticos, bits
cuanticos, puertas légicas cudnticas y circuitos cuanticos.

e Capitulo 3: Inteligencia artificial: introduccién a la inteligencia artificial y a mu-
chos de los conceptos bésicos de la misma. Se explican las neuronas artificiales, las
redes neuronales, los diferentes métodos de aprendizaje y el estado actual de las redes
neuronales modernas.

e Capitulo 4: Algoritmos de multiplicacién de matrices: se estudian ciertos al-
goritmos cuanticos de multiplicaciéon de matrices, y se comparan con los algoritmos
actuales y se realiza un analisis de complejidad de los mismos. Se realiza también una
estimacién temporal de los algoritmos en los modelos actuales de redes neuronales.

e Capitulo 5: Busqueda de Grover: se estudia la integracion de la bisqueda de Grover
en la inteligencia artificial. Se realiza un analisis completo de la btsqueda de Grover y
sus multiples aplicaciones en la inteligencia artificial.

e Capitulo 6: Computacion cuantica adiabatica: se analiza la computacién adiaba-
tica, un tipo de computacién cudntica que utiliza otros principios distintos a la compu-
tacion cuantica basada en puertas y circuitos. También se estudian las arquitecturas y
topologias D-Wave, una de las arquitecturas principales actuales en ordenadores adia-
baticos cuanticos.

e Capitulo 7: Conclusiones: resumen de las conclusiones de todo el trabajo, y pequeno
analisis de los problemas principales actuales que previenen la implementacién de los
ordenadores cudnticos en proyectos comerciales.

2 Computacion cuantica

Antes de ver como aplicar la computacién cudntica a la inteligencia artificial, es necesario
introducir los conceptos necesarios para entender la computaciéon cuantica. Empezaremos
por conocer los fundamentos fisicos que nos permiten realizar cdlculos utilizando la fisica
cuéntica, y se irdn viendo todas las estructuras algebraicas que se construyen a partir de esos
fundamentos fisicos. Estas estructuras, como los bits cuanticos, las puertas légicas cuanticas
o los circuitos cuanticos, nos proporcionan las abstracciones necesarias para poder razonar
sobre algoritmos cuanticos.

2.1 Fundamentos fisicos de la computacién cuantica

La computacién cudntica utiliza la fisica cuantica como base para realizar calculos logicos.
A un tamano suficientemente pequeno, la materia se comporta como ondas y particulas a la
vez [1]. Esto se conoce como la dualidad onda-particula, y es uno de los principios bésicos
de la fisica cudntica. A partir de esta dualidad, surgen muchos comportamientos interesantes
que los ordenadores cuanticos pueden aprovechar para mejorar significativamente el tiempo
requerido para realizar ciertos calculos. Especialmente, se utilizan la superposiciéon cuantica
[2] y el entrelazamiento cuédntico [3].

El principio de superposiciéon cuantica es la base fundamental para muchos de los algorit-
mos cuanticos que estudiaremos a lo largo de este trabajo. La superposicién cuantica consiste
en que en los sistemas fisicos cudnticos (ver apartado 2.1.1) se dan todas sus posibles confi-
guraciones a la vez, hasta que sean observados. Especificamente, para cada sistema cuantico
existen varios estados fundamentales, los posibles estados en los que puede estar el sistema
tras ser observado. El estado actual es una combinacién lineal de estos estados fundamentales,
siendo la probabilidad de cada uno de los sistemas un factor en la combinacién. La superpo-
sicién y sus consecuencias para la computacién cuantica se estudiaran con mas detalle en el
apartado 2.2.

El otro principio que vamos a necesitar, el entrelazamiento cudntico, también es un pilar
importante de la computacién cuantica. Este principio nos dice que podemos “entrelazar”
dos sistemas cuanticos, haciendo que las probabilidades de ambos estén relacionadas. Como
veremos en el apartado 2.2.4, esto nos permite generar probabilidades dependientes, de forma
que podemos realizar calculos en ambos sistemas a la vez. Esto, tedricamente, nos proporciona
un speedup exponencial, ya que con cada sistema que entrelacemos multiplicamos la cantidad
de estados posibles.

Utilizando estos dos principios, y algunos otros que se explicaran durante el desarrollo del
presente trabajo, podemos realizar calculos aprovechando las propiedades de la fisica cuantica
para mejorar el tiempo de ejecucién y la eficiencia de muchos algoritmos.

4 COMPUTACION CUANTICA

2.1.1 Sistemas fisicos de los ordenadores cuanticos

Para implementar los ordenadores cuanticos, a lo largo de los anos se han utilizado una gran
variedad de sistemas fisicos. La gran mayoria de estos sistemas fisicos son sistemas binarios
(sistemas que tienen dos estados fundamentales, |0) y |1)). A continuacién se puede ver una
lista de algunas implementaciones fisicas utilizadas en ordenadores cuanticos actuales:

Sistema Estado |0) Estado |1)
Polarizacién de un fotén Polarizacién horizontal Polarizacién vertical
Ntumero de fotones 0 fotones 1 fotén
Espin de un electrén Espin positivo Espin negativo
Espin de un nicleo atémico Espin positivo Espin negativo
Punto cudntico [4] Espin positivo Espin negativo
Sentido de una corriente Sentido horario Sentido anti-horario
Par de puntos cuanticos Electrén en punto izquierdo | Electrén en punto derecho
Semiconductor de doble capa Electrén en capa inferior Electron en capa superior

Tabla 2.1: Sistemas fisicos en la computacién cuédntica. Fuente: [5]

Ademés de los sistemas de la tabla anterior, existen muchos otros sistemas fisicos que se
utilizan actualmente. Muchos de ellos dependen de la arquitectura del procesador cuantico del
ordenador, por lo que enumerar todas las implementaciones consistiria en enumerar todas las
arquitecturas de ordenadores cuanticos. También existen sistemas cuanticos con méas de dos
estados [6], que requieren un menor nimero de sistemas para representar la misma informacién
pero complican méas cada uno de los sistemas.

Esta tabla solo representa los sistemas fisicos para los ordenadores cuanticos basados en
puertas logicas cudnticas (ver apartado 2.3). Como se estudiara en el capitulo 6, existen otros
tipos de ordenadores cuanticos que no siguen ese modelo de computacion.

2.1.2 Notacion bra-ket

Como consecuencia de que la computacién cuantica esté basada en la fisica cuantica, hay
muchas convenciones y formalismos de la fisica cuantica que se han adoptado en la compu-
tacion cuantica. Entre ellos, el mas prominente es la notacién bra-ket [7] (del inglés braket),
que se utiliza para describir los estados cuanticos y algunas de las operaciones bésicas que se
pueden realizar sobre los mismos.

Esta notacién estd formada por dos partes, los bras (¢| y los kets |1). Cada ket representa
un estado cudntico, y cada bra representa un punto de referencia desde el que se observa el
sistema cudntico. Al combinar un bra (¢| con un ket [1)) de la forma (¢|1)), obtenemos la
amplitud de que el sistema pase del estado |1) al estado |¢p) al ser observado. Las amplitudes,
junto con su relaciéon con la probabilidad de cada estado, se estudian en mas detalle en el
apartado 2.2.1.

2.1. FUNDAMENTOS FISICOS DE LA COMPUTACION CUANTICA 5

2.1.2.1 Kets

Los sistemas cuanticos tienen estados fundamentales, a partir los cuales podemos construir
todos los posibles estados del sistema. Aunque normalmente estos estados fundamentales son
combinaciones de |0) y |1), en ciertos sistemas cuanticos podemos tener estados fundamentales
mas complejos. Estos sistemas forman una base vectorial, por lo que a veces se les conoce
también como los estados base del sistema. Todos los posibles kets del sistema cudntico se
pueden definir a partir de los estados base. Si Ey, Fq,... son los estados base del sistema,
tendriamos la siguiente expresién para un ket, siendo a g, la amplitud del ket para la base E;:

[1) :aE1E1+O‘EzE2+"':ZaEiEi (2.1)
[

Esto también se podria expresar utilizando el producto interior para obtener las amplitudes
del ket:

[¥) = (Er|¢)) By + (Br[¢p) By + -~ = Y (Eil¢) E; (2.2)

)

Si a partir de los estados base Eq, Fa, ... definimos un espacio vectorial (que en nuestro caso
serfa un espacio de Hilbert complejo [8]), podemos expresar los kets como vectores dentro de
ese espacio:

ag, (Erly)
) =ap By +apEr+ - = | ag, | = [(E2y) (2.3)

2.1.2.2 Bras

Un bra es el vector que al multiplicarlo con cualquier ket es igual a la amplitud de ese bra y
ket. En otras palabras, multiplicar un bra y un ket es igual al producto interior:

(Wllg) = Wlo) Vo) (2.4)

Podemos construir un bra a partir de su ket. El bra correspondiente a un ket se define como
el vector transpuesto conjugado del ket. Sea o el transpuesto conjugado del vector © y z* el
conjugado complejo del ntimero z, tenemos la siguiente definicion:

a1 f

W= =la] =(afa3...) (2.5)

Como los bras y kets son vectores, podemos aplicar operaciones vectoriales sobre ellos. Esto
incluye la suma y resta, el producto escalar y la multiplicacién por valores escalares. Como
veremos mas adelante, no todos los posibles kets y bras son estados cudnticos validos, ya que
existen ciertas restricciones que limitan como podemos formar los estados.

De la notacién bra-ket, utilizaremos el producto interior para extraer amplitudes de estados
cudnticos. Si tenemos un estado |¢) = >, ag, | E;), podemos extraer cualquier ag, utilizando
el bra (E;|:

6 COMPUTACION CUANTICA

ap, = (Eilv) (2.6)

También podemos extraer combinaciones lineales de amplitudes de cualquier combinacién
lineal de estados, aplicando las propiedades de los vectores:

((Er| + (Bal) (Y1) + [12)) = (Er|h1) + (Er|p2) + (E2|vr) + (E2|2) (2.7)

Utilizaremos la flexibilidad proporcionada por esta notaciéon para simplificar algunos de los
desarrollos matematicos en los siguientes apartados.

2.1.2.3 Sistemas compuestos

En muchos de los siguientes apartados tendremos que trabajar con sistemas compuestos de
otros sistemas. Para componer dos sistemas con los estados base Ei, Es,... v F1,Fy,...
utilizaremos el producto tensorial. Cada estado base del sistema compuesto se puede obtener
como un producto tensorial de dos estados bases |E;) y |Fj):

|Es, Fy) = |E;) @ | F)) (2.8)

También se puede omitir la coma, dejandonos con |E;F}). Omitiremos la coma solo cuando
no cree ambigiiedad. Por ejemplo, si tenemos dos sistemas binarios, cada uno con los estados
base |0) y |1), tendrfamos los siguientes estados base en el sistema compuesto por los dos
sistemas:

00) = [0,0) = 10) ©|0)
01) = [0,1) = J0) & 1)
10) = 1,0) = 1) |0) 29
1) = [1,1) = |1) & 1)

2.2 Bits cuanticos

El bit es la unidad fundamental de informacién en los sistemas de computacién cldsicos. Un
bit es la cantidad de informaciéon minima, un 0 o un 1, verdadero o falso. Normalmente, otros
tipos de datos més complejos se construyen a partir de bits. La computaciéon cudntica tiene
un concepto analogo al bit, el cubit (bit cudntico, del inglés quantum bit). Los bits cudnticos,
como los bits clasicos, pueden estar en uno de los dos estados base, |0) o |1). No obstante,
gracias al principio de superposicion, los ciibits también pueden estar en una combinacién de
los dos estados al mismo tiempo. Por ejemplo, el estado |[4) se encuentra en el punto medio
entre |0) y |1), y se define matemdaticamente con la siguiente expresién:

C Ly Lo loem
V2 V2 V2
Como estamos trabajando con 1 cibit, solo tenemos dos estados base, |0) y |1). Esto significa
que el cubit puede estar en cualquier superposicién de los dos estados base. Por lo tanto, un

+))+ (2.10)

2.2. BITS CUANTICOS 7

estado cualquiera [1) lo podriamos definir de la siguiente forma:

[¥) = ap [0) + a1 [1) (2.11)

En una superposicién, el coeficiente de cada estado se conoce como la amplitud de ese estado.
Como las amplitudes de los estados son nimeros complejos [9], ag y @1 son niimeros complejos
en la anterior ecuacién (g, a1 € C). Esto significa que podemos definir estados utilizando
nimeros complejos, como el estado |i), que también se encuentra en el punto medio entre |0)

y [1):

. 1 i |0) +¢|1)
i) = = 10) + = 1) = PEZE
V2 V2 V2
Como ya hemos visto anteriormente, podemos utilizar la notacion bra-ket para extraer las
amplitudes de un estado cuantico. No obstante, solo utilizaremos esa notacién cuando no

hayamos definido previamente las amplitudes del estado. Si «, es la amplitud de |¢) para
|z), tenemos la siguiente equivalencia.

(2.12)

az = (z|) (2.13)

2.2.1 Midiendo bits cuanticos

Aunque un cubit tenga ciertos valores para las amplitudes «g y a1, no es fisicamente posi-
ble obtener esos valores de forma directa, ya que no son valores observables. Para obtener
informacién a cerca de un cibit para el que no conocemos sus valores a priori, es necesario
observarlo. A la hora de observar un cubit, se mide su estado, que hace que el estado del
ctbit colapse a uno de los estados base del sistema (|0) o |1) en el caso de 1 cubit).

La probabilidad de que un cibit colapse a cada uno de los estados depende del cuadrado
de la magnitud de la amplitud del estado. Un ctbit en estado o |0) + aq |1) colapsara a los
estados |0) y |1) con las siguientes probabilidades:

P(|0)) = |av|?
(10) = ol o1
P(I1)) = |aa|
Por ejemplo, si medimos el estado |+) que vimos anteriormente, tenemos ||?> = 0.5 y

la1 |2 = 0.5, por lo que el estado tiene un 50% de probabilidad de colapsar a |0) y 50% de
colapsar a |1). Como la probabilidad total del sistema siempre tiene que sumar 1, tenemos la
siguiente restriccién para sistemas de 1 cubit:

P(|0) + P([1)) = |aol* + a1 [* = 1 (2.15)

Esta propiedad se conoce como la restriccién de normalizacién, y también se aplica cuando
tenemos sistemas mas complejos. Como la inica manera que tenemos para obtener informa-
cién del sistema es medir su estado, no podemos conocer los valores exactos de o y 1. Tan
solo podemos conocer el resultado al que han colapsado. Esta es una propiedad fundamental
de los sistemas cudnticos, y veremos en algunos apartados ciertas técnicas que se utilizan

8 COMPUTACION CUANTICA

para mitigar esta limitacién de los sistemas cuanticos y extraer el maximo de informacion
posible del sistema.

2.2.2 Fase global

La fase global del sistema cuantico es la fase comtin de todas las amplitudes del sistema. Por
ejemplo, un sistema con amplitudes e? / V2 tendria como fase #. Normalmente, la fase global
de un sistema se define como la fase de la primera amplitud («g para sistemas de un cibit),
de forma que la fase relativa de la primera amplitud siempre sea 0. A partir de aqui, podemos
calcular las fases relativas de cada una de las amplitudes del sistema quitando la fase global.
Siendo 6 la fase de la primera amplitud, utilizando la fé6rmula de Euler [10] obtenemos las
siguientes amplitudes para un sistema de un cubit:

alh = age 0

R (2.16)
o] = e
Una propiedad muy interesante de los sistemas cudnticos es que la fase global del sistema
no afecta al resultado. En otras palabras, modificar la fase de todas las amplitudes de un
sistema no varia el resultado obtenido, siempre que se modifiquen todas las fases de igual
forma. Esta propiedad se utiliza para simplificar los calculos en ciertas situaciones, y para
facilitar el razonamiento a cerca de los estados de los sistemas.

Por ejemplo, para sistemas de un ctbit, hay infinitos estados equivalentes al estado |0), ya
que €7]0) es exactamente el mismo estado pero variando la fase global por v radianes. Todas
las transformaciones que se pueden realizar en este sistema de 1 cibit produciran el mismo

resultado para |0) y para €7 |0).

2.2.3 Esfera de Bloch

Para representar visualmente el estado de un ciibit, podemos utilizar la esfera de Bloch. Esta
es una visualizacién conveniente que nos ayudard a entender las operaciones que podemos
realizar en un cubit. La esfera de Bloch representa un cibit como un punto en una esfera de
radio 1 en R3.

Aparentemente, tenemos 4 grados de libertad para un ctbit en un estado ag |0) + a1 |1), ya
que g y a1 son numeros complejos con 2 grados de libertad cada uno. No obstante, podemos
quitar un grado de libertad aplicando la restriccién de normalizaciéon |ag|? + |a1|? = 1.
Podemos eliminar otro grado de libertad quitando la fase del sistema, de forma que la fase
relativa de la primera amplitud sea 0. Siguiendo el desarrollo de [11], podemos expresar ag y
«q a partir de los parametros 6 y ¢:

Qp = Cos B
0 (2.17)
o) = €' sin -

2

Un estado |¢)) = ag |0) + aq |1), por lo tanto, se expresaria asi a partir de 6 y ¢:

2.2. BITS CUANTICOS 9

0 ; 0
|1)) = cos B |0) + €% sin 3 1) (2.18)

Interpretando los pardmetros 6 y ¢ como los angulos de un sistema de coordenadas esféricas
[12], obtenemos el siguiente vector en R3:

sin @ cos ¢
U= [sinfsin¢ (2.19)
cosf

Tras esto, podemos dibujar el vector resultante sobre una esfera de radio 1. Tras hacerlo, nos
queda la siguiente visualizacién del estado de un cubit:

2 =10)

Figura 2.1: Representacién de un vector ¥’ en la esfera de Bloch. Fuente: elaboracién propia

Los dos estados base |0) y |1) se encuentran en los polos norte y sur de la esfera, en los dos
extremos del eje z. En los extremos del eje &, nos encontramos los estados |+) y |—), que se
definen con la siguiente férmula:

0) + 1)
V2

0= [1) (2.20)
V2

+) =
)=

En los extremos de y se encuentran |—i) e |i), que se definen asi:

0) +i]1)
V2

0) — 1) (2.21)
V2

i) =
i) =

10 COMPUTACION CUANTICA

La esfera de Bloch es una representacién es muy 1util para visualizar 1 cibit, ya que agrupa
todos los estados que tienen la misma fase global. De esta manera, al visualizar un estado o
una transformacion en la esfera de Bloch, mantendremos sélo la informaciéon imprescindible
para la visualizacién, sin tener que preocuparnos de todos los estados equivalentes.

2.2.4 Muiltiples cubits

En la computacién clasica, para 2 bits tenemos 4 estados posibles (00, 01, 10 y 11). Con
dos cibits, obtenemos 4 estados base: |00), |01), [10) y |11). Para representar un estado de
un sistema de dos cubits, necesitaremos asociar una amplitud a cada uno de los 4 estados
fundamentales. Por lo tanto, el sistema de dos ciibits puede tener un estado como el siguiente:

[9) = @00 |00) + o1 [01) + 10 [10) + aq1 [11) (2.22)

Esto se puede generalizar ficilmente para n ctbits. Los estados base son todas las combinacio-
nes de 0 y 1 de n elementos ({0,1}"), y por lo tanto necesitamos una amplitud «, para todo
x € {0,1}". Para describir un estado cualquiera [¢)) en un sistema de n cubits, tendriamos la
siguiente expresion:

W)= Y alz) (2.23)

z€{0,1}"

A la hora de medir estados en sistemas de miiltiples cibits, podemos medir cualquier ctbit
del sistema. Al medir, todos los ctubits entrelazados colapsaran a un estado fundamental. En
un sistema en el que todos los cubits estan entrelazados, la probabilidad de que el sistema
colapse al estado fundamental z € {0,1}" es la siguiente:

P(|z)) = |agl? (2.24)

Como la suma de las probabilidades del sistema tiene que ser 1, tenemos la siguiente restric-
cién de normalizacién que para los sistema de varios cubits:

Yo P()= D> Jaul?=1 (2.25)

ze{0,1}" ze{0,1}7

2.2.4.1 Entrelazamiento de cubits

En sistemas de varios ciibits, los ctibits se pueden entrelazar mediante varios tipos de interac-
ciones. Varios cubits estan entrelazados cuando estdn en un estado que no se puede expresar
como un producto de los estados de cada uno de los ctibits individuales. Por ejemplo, el estado
|®1), uno de los 4 estados de Bell [13], es un estado entrelazado:

00) +|11)
V2

Para ver si un estado estd entrelazado o no, tenemos que ver si es posible descomponer
el estado de forma que tengamos amplitudes para cada cubit. Si el primer ctubit esta en el
estado [1g) = ap|0) + a1 |1) y el segundo en el estado [11) = «f |0) +] |1), podemos expresar
cualquier estado no entrelazado de la siguiente forma:

o) = (2.26)

2.2. BITS CUANTICOS 11

) = [1) ® [h2)
= (a0[0) + a1]1)) ® (0 [0) + @7 [1)) (2.27)
= apay |00) + apa |01) + aqag |10) + ey [11)

Para verificar si un estado estd entrelazado o no, simplemente tenemos que ver si existe
una combinacién de valores de g, a1, af y o) que equivalga a las amplitudes del estado
que queremos comprobar. Por ejemplo, para comprobar que |®T) est4 entrelazado, podemos
realizar el siguiente desarrollo:

(2.28)

Como podemos ver en el desarrollo anterior, las ecuaciones son contradictorias, ya dos de
ellas dicen que ninguna amplitud puede ser 0 y las otras dos requieren que al menos dos de
las amplitudes sean 0. Como hay una contradiccion, podemos concluir que |®1) es un estado
entrelazado, ya que no se puede expresar como un producto de estados de los cibits. Todo
este proceso también se puede generalizar para n cubits, aunque el desarrollo se vuelve mucho
mas complejo.

Existen 4 estados de Bell, todos de ellos entrelazados. Estos estados se utilizan frecuen-
temente en los algoritmos cudnticos, ya que a partir de ellos se puede llegar a estados con
propiedades muy tutiles.

MUY
ooy = J11)
) =Tm
(2.29)
gy = 00 +110)
V2
gy = 0L =10

V2

Medir un cubit de un estado entrelazado colapsa todos los ciibits que estaban entrelazados
en ese estado. Esto ocurre de forma instantdnea, incluso si los ciibits se encuentran a mucha
distancia [14].

2.2.5 Notacion vectorial

Para facilitar la representacién de operaciones sobre cubits, representaremos el estado de un
sistema de uno o mas cubits como un vector de amplitudes, ordenado de la siguiente manera:

12 COMPUTACION CUANTICA

ag|0) + oy |1) = (0‘0> (2.30)

aq

Como muchas de las operaciones bésicas que podemos aplicar sobre ciibits son lineares,
esto nos permitird expresar esas operaciones como matrices. A continuacién se puede ver la
notacién para las superposiciones de 2 cubits:

a0 [00) + a1 [01) + a0 |10) + arq [11) = | ¢! (2.31)

Para casos con mas de dos ciibits, las amplitudes del estado estaran en el mismo orden,
siendo la primera amplitud la correspondiente al estado de sélo ceros (|0...0)) y la dltima la
correspondiente al estado de s6lo unos (|1...1)):

Q0...0
ap...1

Y aglay=| ... (2.32)
ze{0,1}7 Q1.0
1.1

2.3 Puertas légicas cuanticas

En la computacioén clésica, las operaciones fundamentales que podemos realizar sobre bits son
las puertas légicas. De igual manera, las operaciones basicas que podemos aplicar a los cibits
son las puertas légicas cuanticas. Como los ctbits son mas complejos que los bits clasicos,
muchas de estas puertas también son mas complicadas que las puertas légicas clasicas.

Para representar las operaciones que veremos a continuacion, utilizaremos matrices. Repre-
sentaremos cada puerta como una matriz cuadrada, que al multiplicar un vector de amplitudes
produzca el vector de amplitudes resultante tras aplicar la puerta. Por ejemplo, la siguiente
matriz representa la puerta identidad, que deja un ctbit con las mismos amplitudes:

I= (é 2) (2.33)

Para mantener la restriccién de normalizacion, todas las operaciones que se pueden realizar
sobre cubits tienen que ser matrices unitarias. Una matriz U es una matriz unitaria si y solo
si su inversa es igual a su transpuesta conjugada. En otras palabras, tiene que cumplir la
siguiente restriccién:

Ut =0U=1 (2.34)

Como cada cibit esta formado por dos nimeros complejos, las puertas cudnticas de 1 ctbit
seran necesariamente matrices 2 x 2 de ntimeros complejos. Para puertas de n cubits, ten-
dremos matrices de 2" x 2. Como todas las matrices unitarias tienen una matriz inversa,
significa que cualquier puerta légica cuantica es reversible, y que por lo tanto cualquier ope-

2.3. PUERTAS LOGICAS CUANTICAS 13

raciéon que realicemos sobre un sistema cudntico se puede deshacer. La tinica excepcién es
medir el estado del sistema, que es una operacion irreversible.

A continuacién, comentaremos las puertas logicas cudnticas méas habituales, junto con sus
propiedades y usos.

2.3.1 Puertas de Pauli

Las puertas de Pauli (las puertas X, Yy Z) son tres puertas que actian sobre un tnico cibit.
Estas puertas corresponden a una rotacion alrededor de los ejes @, y y z por 7 radianes
(180 grados) en la esfera de Bloch. Como la puerta X rota alrededor del eje x, realizard las
transformaciones |0) — |1) y |1) — |0) en la esfera de Bloch:

Figura 2.2: Puerta X en la esfera de Bloch. Fuente: elaboracion propia

Como esta puerta “invierte” el bit del ctibit también se conoce como la puerta NOT cuantica.
Ademas, realiza |i) — |—i) y |—i) — [i) en la esfera de Bloch, dejando |+) y |—) sin modificar.
La representacion matricial de la puerta X es la siguiente:

X= ((1) é) (2.35)

La puerta Y es como la X, solo que intercambia |0) con [1) y |[+) con |—), y deja |i) y |—i)
sin modificar en la esfera de Bloch.

14 COMPUTACION CUANTICA

Figura 2.3: Puerta Y en la esfera de Bloch. Fuente: elaboraciéon propia

La representacion matricial de la puerta Y es la siguiente:

Y= (? _OZ> (2.36)

Cabe destacar que la puerta Y, a diferencia de la puerta X, introduce fase al sistema. Con-
cretamente, como hace las transformaciones |0) — —i|—1) y |—1) — 4 |0), introduce fases i
y —i. Esto significa que para sistemas de multiples cibits tendremos que tener esta fase en
cuenta a la hora de operar utilizando esta puerta.

La puerta Z no modifica |0) y [1), e intercambia |+) con |—) y |i) con |—i):

0)

|—%) %)

1)

Figura 2.4: Puerta Z en la esfera de Bloch. Fuente: elaboracién propia

La puerta Z corresponde con la siguiente matriz:

7 = (é _01> (2.37)

Como se puede ver en la matriz, la puerta Z también introduce fase, ya que hace |1) — —|[1).
Como las 3 puertas son rotaciones de 180 grados, son involutivas, por lo que tenemos X2 =
Y2 = Z? = I. A continuacién se pueden ver los resultados exactos (con fase) de aplicar las 3
puertas a los 6 estados principales de la esfera de Bloch:

2.3. PUERTAS LOGICAS CUANTICAS 15

) | X[9) | YY) | Z1)
0) | [| @) | 10
10 | =ilo) | —1)
=) | == i) |
R e A e o R I

=) | i) | =1=) | 19
O O e 2 N O N)

Tabla 2.2: Efectos de las puertas X, Y y Z. Fuente: elaboracién propia

2.3.2 Puerta Hadamard

La puerta Hadamard es otra de las puertas fundamentales cudnticas. Esta puerta, al igual
que las puertas de Pauli, equivale a una rotaciéon de 7 radianes en la esfera de Bloch. No
obstante, esta puerta realiza la rotacién a través de un eje situado a 45 grados entre el eje x
y el eje z (el eje (& + £)/+/2). La visualizacién en la esfera de Bloch de esta puerta se puede
ver a continuacion:

0)

1)

Figura 2.5: Puerta H en la esfera de Bloch. Fuente: elaboracion propia

Como se puede ver, esta puerta intercambia los estados |0) y |1) con los estados |+) y |—).
Los estados |i) y |—i) se intercambian entre ellos. La matriz que define a la puerta Hadamard
es la siguiente:

e \}i G _11) (2.38)

La puerta, como representa una rotacién de 7 radianes, es involutiva (H? = I). Sobre un
clibit realiza la transformacion (ap, 1) — (ag + a1, a0 — a1)/v/2. Los efectos que tiene la
puerta sobre los 6 estados principales de la esfera de Bloch son los siguientes:

16 COMPUTACION CUANTICA

|¥) Hy)
) |+)

1) =)

=) 1)

+) 10)

=) | (T=2)[8)

i) | (1+14)|—1)

Tabla 2.3: Efectos de la puerta H. Fuente: elaboracién propia

Como se puede ver, esta puerta intercambia los estados |0) y |1) por los estados |[+) y |—) sin
introducir fase, por lo que se dice que cambia la base del sistema de {|0),[1)} a {|+),|—)}.
La base {|+),|—)} se conoce como la base de Hadamard.

2.3.2.1 Puertas de cambio de base

Generalizando un poco mas lo visto con la puerta Hadamard, se pueden definir las puertas
de cambio de base. Esta es una familia de puertas cudnticas que cambia la base del sistema.
B(|¢) , 1)) es la puerta que cambia la base de {|0),|1)} a {|®), [¢)}, y se puede definir de la

siguiente formas:

w00~ () 1)

Esta puerta es una puerta cudntica vélida si y solo si |[¢) y [¢) son estados cudnticos validos
y son vectores linealmente independientes [15]. Este tipo de base se puede generalizar para n
cibits con la siguiente matriz 2" x 2":

(O...0[1) ... (1... 1)
B([t1) .-, [n)) = : : (2.40)
(0...01) .. (1... 1)

Utilizando esta notacién, podriamos definir la puerta H como B(]4),|—)). Otra base muy
importante es la base de Bell {®T, U™ &~ ¥~} cuya puerta de cambio de base es la siguiente:

(00[B+) (01[B+) (10]B+) (11]B+)
_ - —\ _ [(oojw*) (o1]®w*) (10[w*) (11]¥T)
Bell= B(2T, &7, U7 07) = | g0 (o110~} (10]0-) {11]0")
00[w-) (01]) (10/T-) (1)) o

10 0 1

1 lo1 1 o0

V2|10 0 -1

01 -1 0

2.3. PUERTAS LOGICAS CUANTICAS 17

2.3.3 Puertas de desplazamiento de fase

Las puertas de desplazamiento de fase son una familia de puertas cuanticas que alteran la fase
del ctbit al que se aplican, realizando (ag, a1) — (ag, €"?aq). Las puertas de desplazamiento
de fase se describen con la siguiente matriz, donde ¢ es el desplazamiento de la puerta:

1 0
Pl =y o) (242
Este tipo de puertas equivalen también a una rotacién de ¢ radianes en la esfera de Bloch

alrededor del eje z. Las puertas de desplazamiento de fase mas utilizadas son la puerta T,
donde ¢ = 7/4; la puerta S, donde ¢ = 7/2; y la puerta de Pauli Z, donde ¢ = 7.

T=r (%)= (3 e?1>
s=r ()3)= %) =
o= (3)= (2 %)

Los efectos de estas puertas sobre los estados principales de la esfera de Bloch se pueden ver
a continuaciéon:

] T[v) [S0) | P)1Y)
0) o) 0) o)

V| e |y | e
=) | Q= Ve |) | (1e)/v2
)| ey VE | L) | (1,e)/vR
1) | (=i VE |)| (1 —ie®) /v
i) | @iem Ve |) | (Lie)/V?

Tabla 2.4: Efectos de las puertas de desplazamiento de fase. Fuente: elaboracién propia

2.3.4 Puerta SWAP

La puerta SWAP es una puerta que opera sobre dos ctibits. La puerta intercambia los valores
de los cubits. Si un ctbit es |0) y el otro es |1), se invertirdan los valores. Como la puerta
opera en varios cibits, no la podemos representar mediante la esfera de Bloch. La matriz que
representa esta puerta es la siguiente:

SWAP = (2.44)

o O o
O = OO
o O = O
— o O O

18 COMPUTACION CUANTICA

Si vemos como afecta a los 4 estados base para sistemas de 2 cibits, tenemos la siguiente
tabla:

[¥) | SWAP[Y)
j00) [100}
01) | [10)
10) | o1)
1) | 1)

Tabla 2.5: Efectos de la puerta SWAP. Fuente: elaboracién propia

Como se puede ver en la tabla la puerta intercambia los valores del primer y del segundo
ctbit, respecto a los estados |0) y |1). Cabe destacar que la puerta es simétrica respecto
al primer y segundo cubit, lo que implica que el efecto sobre cada uno de los cubits es el
mismo incluso si los intercambiamos entre si. La puerta SWA P también es involutiva, ya que

SWAP? = 1.

2.3.5 Puertas controladas

Las puertas controladas son una familia de puertas cuanticas que acttian en dos o més cubits,
donde algunos de los cibits controlan si la operacién se realiza o no. Por ejemplo, la puerta
CX (o CNOT) es la version controlada de la puerta de Pauli X. Si el primer cibit estd en
|1), aplicard la puerta X al segundo ctbit. Si estd en |0), el segundo ciibit se quedard sin
modificar. Basicamente, realiza la siguiente transformacion de estados:

[¥) | CX[9)
00) |]00)
01) | |01)
10) | [11)
11) | [10)

Tabla 2.6: Efectos de la puerta CX. Fuente: elaboraciéon propia

Esto se puede describir mateméticamente con la transformaciéon CX |a,b) — |a,a @ b), siendo
@ la puerta XOR. Es por esto que a veces se conoce esta puerta como la XOR cuéntica. La
representacién matricial de la puerta CX es la siguiente:

X = (2.45)

OO O
o O = O
= o o O
O = O O

Como se puede ver, la matriz contiene la puerta de Pauli X en la esquina abajo derecha. Esto
no es casualidad, ya que es como se construyen de manera general las puertas controladas.
Si tenemos una puerta cualquiera de 1 cubit U, entonces la versién controlada de la puerta

2.3. PUERTAS LOGICAS CUANTICAS 19

U serfa la siguiente matriz:

1 0 O 0
01 0 0

CU= 10 0 o uor (2.46)
0 0 wuo wunn

Esta puerta CU aplicard la puerta U solo cuando el primer cubit esté en el estado |1), y no
la aplicara cuando estéd en |0). La puerta CU realiza la siguiente transformacién:

) | CU)
|00) |00)
j01) 01)
110) | 1) ® U|0)
1 | [He U

Tabla 2.7: Efectos de la puerta CU. Fuente: elaboracion propia

Este proceso se puede aplicar para cualquier puerta U de 1 cubit. También se puede construir
de forma similar matrices con méas de 1 cibits de control. Por ejemplo, podriamos definir la
puerta CCU como una puerta doble-controlada, que requiere que dos bits de control en vez
de uno para realizar la puerta U. Esta puerta se definiria de la siguiente manera:

1000 00 O 0
01 00O0O0 O 0
001 0O0O0 O 0
0 001O0O0 O 0
cet= 000O01O0 O 0 (2.47)
000O0O0OT1 O 0
000 00 0 wypp wuot
00 0 O0O0O0 uijp U1l

De forma similar, también podemos generalizar la construccién de una puerta controlada
para una puerta con cualquier niimero de cubits. Sea W la matriz de una puerta de n cibits,
y I'la puerta identidad de n cibits, obtendriamos la siguiente matriz para la puerta CW, que
serfa una puerta de n 4 1 cubits:

aw- (D) 215

Para denotar una puerta U-controlada con n bits de control, utilizaremos la notacion C™U.

2.3.5.1 Puerta Toffoli

Una de las puertas controladas mas utilizadas es la puerta Toffoli. La puerta Toffoli, el la
puerta de Pauli X doble controlada. La matriz que la define es la siguiente:

20 COMPUTACION CUANTICA

CCX = (2.49)

OO OO oo o
[=eleleNoNBell e
[=Nelelolall S =N
[elolNellele o]
OO O, OO oo
OO RO OO oo
_ o O O oo oo
O O O O o oo

Como hemos anadido dos controles a una puerta de un cubit, esta puerta es de 3 cubits. En
la tabla 2.8 se puede ver los efectos de esta puerta sobre los estados base para sistemas de 3
cubits.

) | COX)
1000y | [000)
j001) | |o01)
010) | |010)
j011) | |o11)
1100) | |100)
1101) | |101)
1110) | |111)
1111) | |110)

Tabla 2.8: Efectos de la puerta Toffoli. Fuente: elaboracién propia

Esta puerta se utiliza normalmente para implementar ciertas puertas de légica clasica, ya que
no se pueden implementar de forma directa con ordenadores cudnticos [16].

2.3.5.2 Puerta CZ

Otra puerta controlada muy utilizada es la puerta CZ, la puerta controlada de la puerta Pauli
7. Su matriz es la siguiente:

100 0
010 0

CZ=10 0 1 o (2.50)
000 —1

Sus efectos se pueden ver a continuacion:

2.3. PUERTAS LOGICAS CUANTICAS

21

¥) | CZ]¢)
|00) | |00)
|01) |]01)
|10) | [10)
1) | 1, -1)

Tabla 2.9: Efectos de la puerta C'Z. Fuente: elaboracion propia

2.3.5.3 Puertas de desplazamiento de fase controladas

De forma similar a la puerta C'Z, también se pueden generar versiones controladas de las

otras puertas de desplazamiento de fase:

1 00 O
01 0 0
CP(p) = 00 1 0 (2.51)
0 0 0 e¥
A partir de CP(p), podemos construir las puertas CT' y CS:
1 00 O
T 01 0 O
CT=CP) =g 0 1 o0
0 0 0 €1
(2.52)
1 000
T 01 00
CS_CP(E)_ 0010
00 0 ¢
Los efectos de estas puertas son los siguientes:
[9) | CT) | CS[Y) | CP(p)|¥)
|00) |00) |00) |00)
|01) |01) |01) |01)
|10) |10) |10) |10)
111) | J1,4) | |1,e™/*) | |1,e%)

Tabla 2.10: Efectos de las puertas de desplazamiento de fase controladas. Fuente: elaboracién propia

2.3.5.4 Puerta CSWAP

La puerta CSWAP es la puerta SWAP, pero con un cubit de control. Esta puerta solo
intercambia el valor de los dos ultimos ctbits si el ctbit de control vale |1). Se define con la

siguiente matriz:

22 COMPUTACION CUANTICA

CSWAP = (2.53)

OO O OO o
OO OO~ OO
OO o= O OO
OO R OO OO

[=eleloBoBol e
O OO O o oo
O O O O oo
_ O O OO o oo

0 0 00 0

Esta puerta se utiliza principalmente para estimar el producto interior entre dos vectores
cuanticos. Este tipo de estimacion se conoce como swap test, y es la base de muchos algoritmos
cuanticos que trabajan sobre vectores o matrices. En el apartado 4.2.1, podemos ver como se
puede utilizar este tipo de estimaciones para construir un algoritmo cuantico de multiplicacién
de matrices.

Los efectos de esta puerta sobre un sistema de 3 ciibits se pueden ver en la tabla 2.11.

) | CSWAPY)
000} 000)
|001) 1001)
010) 010)
011) 011)
|100) 1100)
1101) 1110)
|110) 101)
1111) 1111)

Tabla 2.11: Efectos de la puerta CSWAP. Fuente: elaboracién propia

2.3.6 Puertas compuestas

Las puertas cuanticas también se pueden componer a partir de otras puertas cudnticas. Co-
mo los efectos de las puertas se pueden representar con matrices, utilizando operaciones
matriciales podemos formar puertas nuevas a partir de otras.

2.3.6.1 Puertas con exponentes

La forma mas sencilla de formar puertas cuanticas compuestas es poner multiples puertas
cuanticas en serie. Por ejemplo, podriamos formar una puerta U que aplique los efectos de
dos puertas U; y Us utilizando la multiplicaciéon de matrices:

U=U,U; (2.54)

Como son matrices, para que se aplique primero la puerta Uy y después la Us tendremos que
ponerlas de derecha a izquierda. Esto se puede generalizar facilmente para cualquier nimero
de puertas. Si tenemos las puertas U; ... U,, la puerta que equivale a aplicar Uy, luego Us y

2.3. PUERTAS LOGICAS CUANTICAS 23

as{ hasta aplicar U, es la siguiente:

U= HUn—H—i (2.55)
i=1

Utilizando esta misma férmula, podemos encontrar también el resultado de aplicar una puerta
multiples veces, U™. La potencia de esta férmula es que, como las puertas cudnticas validas
son matrices de niimeros complejos, para que U sea una puerta valida n puede ser cualquier
nimero complejo. Esto es especialmente 1til para realizar puertas con exponentes fraccionales.
Por ejemplo, la puerta v X = X2 es una puerta que, tras aplicarla dos veces, realiza los
mismos efectos que la puerta X. La representacién matricial de la puerta se puede obtener
utilizando algebra matricial de forma sencilla:

01 147 /1 —3
VX = <1 0> = <_Z,)) (2.56)
Otras puertas con exponentes fraccionales muy utilizadas son las puertas VY y vV H:
0 —i 1+7/1 -1
VY = (—z’ 0> 2 (1 1 >

VH = \}56 —11)_14_i<ﬂx/+§2i —\/\5/3-27;)

(2.57)

2.3.6.2 Puertas en paralelo

Otro tipo de puerta compuesta muy 1util son las puertas paralelas, que aplican los efectos de
puertas en paralelo a varios ctbits. Las puertas paralelas se pueden construir utilizando el
producto tensorial. Por ejemplo, si quisiéramos aplicar la puerta X y Z en paralelo (una a
cada cubit), tendriamos la siguiente puerta:

0 0 1 0
01\ (1 o0 0 0 0 -1

X®Z_<1 o>®<0 1>_ 1 0 0 0 (2.58)
0 -1 0 0

La puerta X ® Z es una puerta de dos ctbits, y sus efectos son equivalentes a los de aplicar la
puerta X al primer cubit y la puerta Z al segundo. Esto se puede generalizar para cualquier
nimero de puertas, de forma que para aplicar las puertas U ... U, en paralelo a n ctubits de
forma de que la puerta U; se aplique al ciibit ¢ nos quedaria la siguiente puerta:

U= é) Un (2.59)
=1

Si cada puerta U; es una puerta de n; cibits, entonces la puerta paralela U sera una puerta
de > n; cubits. Para construir una puerta que aplique la misma puerta U en paralelo a n
cubits, utilizariamos la siguiente férmula:

24 COMPUTACION CUANTICA

U =QU=UcU®---aU (2.60)
1 n veces

La puerta paralela méas util que sigue este patrén es la transformada de Hadamard, una
puerta que aplica la puerta H en paralelo a n cubits. Por ejemplo, la versién de dos cibits
es la siguiente:

1 1 1
-1 1 -1
1 -1 -1
-1 -1 1

1

—_ = = =

Las familia de puertas H®" normalmente se utiliza para inicializar estados cuanticos, ya que
tras aplicarla a un estados formado por n cubits inicializados en |0), deja el sistema en una
superposicién en la que todos los posibles estados tienen la misma amplitud, 1/v/2™:

1
= > |7) (2.62)
\/Txe{o,l}"

HE|0") =

2.4 Circuitos cuanticos

Cuando tenemos muchas puertas cuanticas en el mismo algoritmo, representarlas con la no-
tacion matricial o la notacién bra-ket se vuelve muy tedioso, especialmente cuando estamos
trabajando con puertas que operan sobre muchos cibits. Para intentar mitigar esto, existe
una notaciéon que representa un algoritmo cuantico como un circuito de puertas cuanticas.

2.4.1 Cables cuanticos

En un circuito cudntico, cada cibit se representa con un cable. Si queremos representar un
multiples ciibits con un cable, especificaremos la cantidad de ctbits del cable con una pequena
linea diagonal. Ademads, a la izquierda del cable pondremos el valor inicial en el que empieza
el cable, ya sea un valor constante (|0), |1), etc.) o una variable (|¢), |¢), etc).

10)
1010) —
i) —#

Figura 2.6: Circuito cudntico con tres cables de 1, 3 y n cubits. Fuente: elaboracién propia

En algunas ocasiones también es necesario representar bits clasicos en diagramas de circuitos
cuanticos. Para esto existe un tipo de cable para bits clasicos. Los cables de bits se representan
con dos lineas, mientras que los cables de ciibits se representan con una linea:

2.4. CIRCUITOS CUANTICOS 25

2

‘¢7¢> 7

10110) =4

Figura 2.7: Circuito con un cable de ctibits (arriba) y de bits (abajo). Fuente: elaboracién propia

2.4.2 Puertas en circuitos cuanticos

Para aplicar puertas logicas a los ctibits de un cable, pondremos el nombre de la puerta dentro
de un rectangulo que intersecte al cable que afecta. Si la puerta afecta a los cuibits de varios
cables, haremos que el rectangulo intersecte a todos los cables que afecte:

9) — H U
Y®n-|—1

) ———— Zon |—

Figura 2.8: Circuito cudntico con varias puertas logicas. Fuente: elaboracién propia

Podemos tener puertas en serie poniendo varias puertas en el mismo cable, y puertas en
paralelo poniendo cada puerta en cables diferentes. Para puertas controladas, se utiliza un
punto negro para indicar el bit (o bits) de control, y el cuadrado con el nombre de la puerta
para indicar la puerta en si:

[¥1) I S I

192) Y —
Bell
143) H o —

Figura 2.9: Circuito cuantico con las puertas CY, CCH, C'S y CBell. Fuente: elaboracién propia

La gran mayoria de puertas se representan utilizando el rectangulo junto con el nombre de
la puerta. No obstante, existen algunas excepciones importantes.

2.4.2.1 Puertas X, CX y Toffoli

La puerta X en circuitos cudnticos se representa utilizando el simbolo ¢. Como las puertas
CX y Toffoli derivan de la puerta X, su representacion en circuitos cuanticos también utiliza
el simbolo @, al igual que el resto de las puertas C"X.

26 COMPUTACION CUANTICA

|11)
|12) —D é

|¢3> N

Figura 2.10: Circuito con X (izquierda), CX (centro) y Toffoli (derecha). Fuente: elaboracién propia

2.4.2.2 Puerta CZ

La puerta C'Z, a diferencia de la puerta de Pauli Z, se representa utilizando dos puntos:

|#)
[4)

Figura 2.11: Circuito cudntico con una puerta CZ. Fuente: elaboracion propia

Con esta notacion, es ambiguo cudl de los dos cibits es el control, y cual es el cubit afectado
por la puerta. No obstante, como la puerta C'Z produce los mismos efectos sin importar el
orden de los ciibits, no importa esta ambigiiedad. Esto también ocurre cuando se controla la
puerta Z con maés cubits, como en la familia de puertas C™Z.

2.4.2.3 Puertas SWAP y CSWAP

La puerta SWAP se representa con una linea que une dos simbolos X, uno en cada cibit que
intercambia. La puerta CSWAP utiliza la misma notacién, pero con un punto indicando el
cubit de control:

Y1)
92)
|3) T

Figura 2.12: Circuito con SWAP (izquierda) y CSWAP (derecha). Fuente: elaboracién propia

2.4.3 Medidores

Para obtener el resultado de los cables, necesitaremos medir los ctubits de los cables. Para
medir un cable, se utiliza una “puerta” especial que representa el medidor. Para reflejar que
los cubits de un cable han sido medidos, cambiaremos el tipo de cable de cubit a bit clasico,

2.4. CIRCUITOS CUANTICOS

27

ya que el resultado de medir cubits es uno de los estados base, que se puede representar

utilizando bits clésicos:

[4)

Figura 2.13: Circuito cuantico con un medidor. Fuente: elaboraciéon propia

H

Z

e —

Estos bits clasicos, aunque normalmente solo se utilizan para almacenar el resultado del
circuito, a veces se pueden utilizar para controlar si ciertas puertas posteriores se ejecutan
0 no, o cuantas veces se ejecuta una puerta. Esto se conoce como un control cldsico, y se
representa en circuitos cudnticos de forma similar a las puertas controladas, pero con el ctbit

de control en un cable de bits:

|#)
[4)

—X

|

[

H

H

Figura 2.14: Circuito con C'H, un medidor y H con control clasico. Fuente: elaboracién propia

Este tipo de control no se suele utilizar, ya que tienen exactamente el mismo efecto que
utilizar una puerta controlada antes de medir el ctubit. Por ejemplo, las dos puertas H de la
figura 2.14 tienen un efecto idéntico sobre los dos cubits. Esto lo sabemos gracias al principio
de la medida diferida (Deferred Measurement Principle) [17].

3 Inteligencia artificial

En el campo de la inteligencia artificial se utilizan técnicas y arquitecturas para la resolucién
de problemas tan complejos que desarrollar un programa tradicional para resolverlos es invia-
ble. Entre estos problemas se incluye la traduccién de lenguaje natural, el reconocimiento de
imégenes y video, y la deteccién de patrones y/o semejanzas. Mediante ciertos mecanismos
que veremos mas adelante, es posible entrenar estas redes para que aprendan ciertos patro-
nes. Hay varios tipos de aprendizaje que se pueden utilizar a la hora de entrenar modelos de
inteligencia artificial:

o Aprendizaje supervisado: consiste en proveer a la red de muchos ejemplos etiquetados.
A partir de estos ejemplos, la red es capaz de ir disminuyendo su error respecto a los
ejemplos, y ir prediciendo mejor el conjunto de datos del que se extrajeron los ejemplos.
Como para generar modelos muy precisos o complejos se requieren muchos datos, se
requiere mucho tiempo de entrenamiento para que el modelo aprenda de todos los
ejemplos. Si no se proveen de suficientes datos, o los datos no son de suficientemente
buena calidad, se pueden obtener resultados subéptimos [18].

e Aprendizaje no supervisado: en el aprendizaje no supervisado, el modelo de machine
learning extrae patrones de datos no etiquetados, mediante el descubrimiento de pa-
trones o semejanzas en los datos. Aunque no requiera tantos datos como el aprendizaje
supervisado, extraer informacion 1til del modelo no es tan sencillo, ya que las categorias
o asociaciones producidas son opacas [19]. También es posible que el modelo encuen-
tre patrones que carezcan de relevancia real a la hora de aplicarlos al andlisis que se
pretendia hacer.

o Aprendizaje por refuerzo: el modelo aprende mediante la interacciéon con su entorno,
y es recompensado o penalizado dependiendo en lo que haga. Estos algoritmos son
especificos a un problema en concreto, pero permiten la optimizacién de tareas muy
complicadas con la programacién de unas heuristicas de recompensa/penalizacién rela-
tivamente simples. El modelo, mediante prueba y error, va aprendiendo poco a poco el
entorno en el que esta interactuando, y poco a poco va afindndose a las caracteristicas
de la funcién de recompensa y penalizacién [20].

La gran mayoria de arquitecturas de inteligencia artificial actuales estan basadas en redes
neuronales. Estas redes son conjuntos de neuronas artificiales, que son nodos que calculan un
valor a partir de sus conexiones con otras neuronas artificiales. Este tipo de arquitecturas estan
inspirados en las redes neuronales bioldgicas encontradas en los cerebros y sus conexiones
neuronales. Primero estudiaremos la estructura de una neurona artificial individual, y luego
estudiaremos las redes neuronales en si.

29

30 INTELIGENCIA ARTIFICIAL

3.1 Neuronas artificiales

En machine learning, una neurona es un nodo de una red neuronal. Cada neurona recibe
ciertas entradas y produce una tunica salida, su valor de activacion. La neurona calcula este
valor a partir de las entradas recibidas, multiplicando cada entrada por su peso correspon-
diente. También se le suma a la activaciéon un valor fijo llamado bias. El resultado se pasa
por la funcién de activacién, que a partir del resultado de las sumas produce la salida de la
neurona. Sea o la funciéon de activacién, x las entradas, w los pesos y b el bias, la salida de
una neurona se calcula utilizando la siguiente férmula:

y=o (b + Zn: wzﬂ?z‘) (3.1)

i=1
Para simplificar la expresién anterior, normalmente se anade una “entrada” zg cuyo valor es
siempre 1, y se utiliza wg como bias:

Yy=ao <Z wixi> (3'2)
1=0

Podemos representar visualmente la ecuaciéon anterior de la siguiente forma:

T3

Figura 3.1: Visualizaciéon de una neurona con 3 entradas. Fuente: elaboracién propia

Existen muchas funciones de activacion, teniendo cada una sus usos. La gran mayoria son
funciones no lineales, que se utilizan para hacer que la salida de las neuronas deje de tener
una relacién lineal con las entradas. Algunas de las funciones de activacién mads utilizadas
son las siguientes:

Lineal: o(z) = x.

Sigmoide: o(z) =1/(14+¢e77%).

Softplus: o(z) = In(1 + e*)

Tangente hiperbodlica: o(z) = tanh(x)

ReLU: o(x) = max(0, x)

3.1. NEURONAS ARTIFICIALES 31

-1 |
—4 -3 -2 -1 0 1 2 3 4

Figura 3.2: Representacién grafica de algunas funciones de activacién. Fuente: elaboraciéon propia

Cada una de las funciones tiene sus ventajas y sus desventajas. Las funciones que tienen
un rango finito tienden a producir resultados més estables, mientras las que no tienden a
hacer que la red se entrene mas rapidamente. Para la estimacién de valores se suelen utilizar
ultimas neuronas la funcién linear, ya que no limitan el rango de valores que puede producir
la neurona.

3.1.1 Perceptrén

Con una neurona ya podemos construir un modelo de machine learning capaz de aprender
ciertas funciones. Utilizando una neurona con la funciéon de activacion de signo, podemos
construir un perceptrén, un clasificador binario lineal [21]. Aunque hay muchas funciones de
activacién de signo que se utilizan para implementar perceptrones, nosotros utilizaremos la
siguiente:

0 siz<O

o(x) = { (3.3)

1 siz>0
Un perceptréon entrenado es capaz de clasificar adecuadamente cualquier funcién en R™ que
sea linealmente separable [22], siendo n la cantidad de entradas del perceptron. El perceptrén

se puede representar como un hiperplano [23] en R", que clasifica como 0 a todos los elementos
de un lado y a 1 todos los elementos del otro lado.

Figura 3.3: Representacién grafica de un perceptrén en R2. Fuente: elaboracién propia

32 INTELIGENCIA ARTIFICIAL

Aunque los perceptrones estén limitados a funciones linealmente separables, se pueden en-
trenar de forma muy simple. Para entrenar un perceptrén, tenemos que encontrar los pesos
adecuados, de forma que para todos los ejemplos de datos el perceptron produzca la salida
correspondiente. Sea m en nimero de ejemplos, n el numero de entradas por ejemplo, x;x
la entrada ¢ para el ejemplo k, yi la salida esperada para el ejemplo k& y w; los pesos del
perceptron, tendriamos que satisfacer la siguiente condiciéon para entrenar el perceptrén:

VEe[l,m], yv=o0 (Z wixik> (3.4)
i=0

Cabe destacar que, como estamos utilizando la férmula simplificada (Eq. 3.2), wy es el bias,
y por lo tanto zogr = 1 para todas las salidas. Para poder medir el progreso respecto a
el resultado que necesitamos, definiremos una métrica que mide el error obtenido para un
ejemplo concreto:

n
E.=y.—0 (Z wia:ik> (3.5)
i=0
El error serd positivo si la salida esperada y, es mayor que la salida actual, negativo si es
menor, o 0 si la salida producida es correcta. Utilizando esta métrica, podemos actualizar
los pesos para mitigar el error [24]. Si el error es positivo, significa que tenemos que hacer
que el valor de la suma ponderada obtenido con las entradas xg . .. T, sea mayor. Para las
entradas positivas, tendremos que incrementar w;, y para las negativas decrementarlo. Esto
se puede realizar multiplicando cada entrada por una pequefia constante 7, y afiadiéndole
esto a w;.

Ep,>0 = Vie[0,n], w; < w; + zin (3.6)
Cuando el error es negativo, podemos realizar lo mismo pero con el signo invertido, ya que
el objetivo entonces es disminuir la media ponderada, no aumentarla.

E, <0 = Vie[0,n], w; < w; —zixn (3.7)

Si el error es cero, dejamos los pesos como estan, ya que producen la salida adecuada.

E,=0 = Vie[0,n], w; < w; (3.8)

Como sumamos z;; n cuando Ei > 0, restamos z;; n cuando Fi < 0y no sumamos ni restamos
nada cuando Ej = 0, podemos unificar las ecuaciones 3.6, 3.7 y 3.8 en una sola ecuacién:

Vi € [0,n], w; < w; + Exzipn (3.9)

De esta forma, se actualizaran los pesos corrigiendo un poco el error. Si repetimos esta ecua-
cién para todos los ejemplos disponibles, eventualmente el perceptrén producird el resultado
correcto para todos, siempre que los ejemplos sean linealmente separables. A partir de esta
ecuacion, podemos elaborar un algoritmo de entrenamiento de perceptrones, que conseguira
entrenar correctamente un perceptron, siempre que el conjunto de datos que estamos apren-
diendo sea linealmente separable.

3.2. REDES NEURONALES ARTIFICIALES 33

Entradas: x (matriz m x n), y (vector de m)
E=1
while £ > 0 do
E+0
for k de 1 a m do
Y oo wiTik)
By <y —
for k de 0 a n do
w; <— w; + Eyxien
end for
end for
end while

Figura 3.4: Algoritmo de aprendizaje para un perceptrén. Fuente: elaboracién propia

El valor n que hemos utilizando se conoce como la learning rate del aprendizaje. Un valor
mas alto hace que se corrija el error mas rapidamente, pero un valor demasiado alto puede
llevar el aprendizaje a estancarse en ciertos casos. Para perceptrones, un valor recomendable
es 1 = 0.01, aunque dependiendo de los datos concretos serd necesario ajustar el valor.

3.2 Redes neuronales artificiales

Una red neuronal es simplemente un conjunto de neuronas conectadas entre si. Las primeras
neuronas de la red, que se conocen como las neuronas de entrada, directamente reciben sus
valores en vez de calcularlos. Estas neuronas actuardn como fuente de datos para el resto de
la red, y a través de ellas es como la red neuronal recibe datos. Las ultimas neuronas, las
neuronas de salida, calculan los valores que corresponden con las salidas producidas por la
red. Las neuronas que no son neuronas de entrada o de salida se llaman las neuronas ocultas.

Figura 3.5: Red con 3 neuronas de entrada, 4 ocultas y 2 de salida. Fuente: elaboracién propia

Las neuronas de una red neuronal normalmente se organizan en capas, como se puede ver en
Fig. 3.5. La primera capa es la capa de entrada, la tltima la de salida, y las capas intermedias

34 INTELIGENCIA ARTIFICIAL

son las capas ocultas. Cuando una red esta estructurada por capas, cada capa suele obtener
sus entradas de la capa anterior y pasarlas a la capa siguiente. Los cdlculos de una capa son
similares a los calculos de una neurona, pero para cada una de las neuronas de la capa:

Yj =0 (Z Wi xz) (3.10)
i=1

Teniendo en cuenta que w es una matriz y x e y son vectores, podemos simplificar la expresién
anterior utilizando multiplicacion de matrices:

1
I T

yi=o | [wo; ... wp,] : =0 (w,;) (3.11)
In

También podemos calcular todas las salidas con la misma operacion:

1
Y1 Woo ... Wno

I T
Ym Wom .- Wpm an

Como se puede ver en las ecuaciones 3.11 y 3.12, la matriz de pesos w estd transpuesta
para que los calculos sean equivalentes a los de la ecuacién 3.10. El vector de entradas en
ambas ecuaciones también tiene xg = 1, para seguir la simplificacién del bias establecida en
la ecuacién 3.2. La ecuacién 3.12 también se puede adaptar para recibir varias entradas a la
vez, lo que nos dejaria con la siguiente ecuacién:

1 1
1 ... 1 weg --- Wpo
(E Y1p " r1ir ... Tip T
y=1: . |=0¢ Do o . =0 (w'z) (3.13)
Ym1l -+ Ymp Wom -.. Wnm Tpl e Tp

Una vez tenemos la férmula exacta para calcular la salida de una capa a partir de sus entradas,
podemos aplicar la misma férmula para calcular el resultado de todas las capas. Como se
puede ver en Figura 3.6, las redes pueden tener muchas capas y cada capa puede tener
cualquier niimero de neuronas.

3.3. ENTRENAMIENTO 35

Figura 3.6: Red neuronal con 1 capa de entrada, 2 ocultas y 1 de salida. Fuente: elaboracién propia

Cada capa tiene sus propios pesos para cada una de sus neuronas, ademdas de su propia
funcién de activaciéon. Dependiendo de la tarea que queramos realizar también existen ciertos
tipos de capas especializados.

3.3 Entrenamiento

Para poder entrenar redes neuronales, primero necesitamos calcular el error que ha cometido
la red. Esto no lo podemos medir como en los perceptrones (ver ecuacién 3.5), ya que para
redes neuronales no es tan sencillo extraer el error de cada peso de la red. Por esto definiremos
un error para toda la red, E, que serd lo lejos que esta el resultado de la red de la salida
esperada. Sea y la salida de la red para la entrada x e ¢ la salida esperada para esas mismas
entradas, tendriamos la siguiente expresion, siendo L la funcién de error (loss function en
inglés):

E = L(y,9) (3.14)

Normalmente nos interesa que la red aprenda de forma mas rapida cudnto més alejada esté del
valor ideal. Esto se puede implementar en la funcién L, utilizando funciones que se comporten
de esta forma. Una de las funciones més utilizadas es la funcién de pérdida cuadratica, que
suma el cuadrado de las diferencias de cada uno de los elementos. Se puede implementar de
la siguiente forma:

L(y,9) = (y —9)° (3.15)

3.3.1 Backpropagation

Para el entrenamiento de redes neuronales, normalmente se utiliza un algoritmo llamado
backpropagation. Este algoritmo calcula cudnto afecta al error cada uno de los pesos de cada
capa. El algoritmo funciona calculando el error primero para las neuronas de la capa de
salida, y “propaga” este error hacia atras para calcular el error de las subsecuentes capas.
Para estudiar las férmulas de backpropagation, primero sera necesario establecer los simbolos
que utilizaremos en esas féormulas. Estos simbolos son los siguientes:

36 INTELIGENCIA ARTIFICIAL

e zx.: entrada recibida por la capa c
e w,: pesos de la capa ¢

e 0. funcion de activaciéon de la capa c

~

e o': primera derivada de la funcién de activacién de la capa c

C
. : _ T

e z.: valores internos de la capa c. z. = w, x,

o a: valores de activacion de la capa c. a. = o(2.)

e J.: error de cada neurona de la capa ¢

o V.: gradiente de la capa c, el error para cada uno de los pesos de la capa c

e L: funcién de pérdida

o y: salida obtenida de la red

e ¢: salida esperada

E: error de la red. E = L(y,)

Para calcular el error de cada neurona de la capa [, tenemos que ver cuanto hace variar esa
neurona al error total. Esto se puede calcular con la derivada parcial del error respecto a los
valores internos de esa neurona, de forma que nos queda la siguiente ecuacién:

_0F
0z
A partir de este valor se puede calcular facilmente el gradiente de la capa c respecto al error

de la red, como se explica detalladamente en [25]. Tras realizar los calculos y demostracio-
nes necesarias, nos queda la siguiente féormula para calcular el gradiente a partir del error

5. (3.16)

propagado:

oF
VC = Tfujc = T¢ 56 (317)

Lo tnico que nos queda es hallar la formula para calcular §.. Empezamos aplicando la regla
de la cadena para dividir la expresién en dos derivadas:

_0OF 0K o da.

© 9z, Oa. Oz

La anterior ecuacion utiliza el producto de Hadamard ®, que es la multiplicaciéon elemento a

elemento de todos los elementos de dos matrices. Como a. = o(z.), podemos simplificar atin
mas la expresion:

(3.18)

_OF _0Ooc(z.) OF
~ Oa, 0z, Oae
Para las capas de salida, como la activacién de la capa (a.) es parte del la salida de la red (y),
podemos expresar OF /Ja, a partir de la funcién de pérdida [26]. Sea 7. el vector de salidas

dc ® oLl(zc) (3.19)

3.3. ENTRENAMIENTO 37

esperadas para esta capa de salida (el subvector de ¢ para a. en vez de para todo y), tenemos
la siguiente féormula, siendo L’ la derivada de L respecto a y:

0E 0L(ac,)
da, Oa,

= L'(ac, fic) (3.20)

Por ejemplo, para L(y, 7)) = (y — 4)?, tendriamos la siguiente derivada:

L'y, §) =2(y — 9) (3.21)

Y por lo tanto tendriamos la siguiente férmula para el error de las capas de salida:

0e = L'(ac, §c) ® 0l(2e) = 2(ac — §c) © ol(2e) (3.22)

Para arquitecturas secuenciales, solo tenemos una tnica capa de salida, por lo que la anterior
ecuacion se puede simplificar aplicando que y. = y:

O = L'(y,§) © op(2e) = 2(y —) © oc(2c) (3.23)

Para el resto de capas, tenemos que formar el error a partir del error de las capas siguientes.
Es necesario realizar un poco de desarrollo matemético adicional, como se puede ver en [25].
Sea ¢ la capa (o capas) que son inmediatamente siguientes a la capa ¢, entonces obtenemos
la siguiente expresion:

OE

N
Sa. = o0 (3.24)

Por lo tanto, obtenemos la siguiente expresién para calcular . a partir de d.:

_OE

O = da.

©0l(2:) = whoy © ol(ze) (3.25)

Para las arquitecturas secuenciales, como ¢’ va a ser tinicamente la capa ¢ + 1, obtenemos la
siguiente expresion:

dc = wcT+150+1 ® o(2c) (3.26)

Juntando ambos casos (ecuaciones 3.22 y 3.25), podemos calcular el error d. de una capa c
de la red neuronal de la siguiente forma, siendo ¢’ la capa siguiente a c:

5 {L’(ac, Ye) ©® 0l(2c) sic es una capa de salida (3.27)

whéy © oh(zc) si ¢ no es una capa de salida

Para arquitecturas secuenciales (ecuaciones 3.23 y 3.26), nos quedaria la siguiente férmula:

5, = {L/(y7 9) ®ol(z.) sicesuna capa de salida (3.28)

wl,16c+1 ® 0l(z) sicno es una capa de salida

38 INTELIGENCIA ARTIFICIAL

3.3.2 Descenso por gradiente

Como se vio en la ecuacion 3.17, podemos calcular el gradiente de la capa ¢ a partir de ..
Una vez hemos obtenido el gradiente, tenemos que actualizar los pesos de la red, de manera
que el error se reduzca. Como el gradiente nos indica la direccién por la que es méas réapido
incrementar el error, para reducir los pesos tenemos que restar para cada peso su gradiente.
Utilizaremos también una learning rate, al igual que para entrenar perceptrones (ver apartado
3.1.1).

We < we —NVe (3.29)

Este tipo de optimizacion se llama descenso por gradiente, y es una de las formas mas simples
de actualizar los pesos de una red neuronal una vez se ha obtenido el gradiente de todas las
capas. Opcionalmente se le puede anadir inercia al algoritmo, controlada por el pardmetro «,
que determina lo rapido que cambia la inercia de la optimizacién:

Aw, +— aAw. —nV, (3.30)
W, — We + Awg ’

Existen muchos otros métodos de optimizacién [27], cada uno con sus complejidades y para-
metros. Aunque muchos de los otros métodos pueden ser muy complejos en su funcionamiento,
su objetivo es el mismo: reducir el error de la red lo maximo posible dado los gradientes.

A la hora de optimizar una red neuronal, el optimizador elegido se ejecuta una gran can-
tidad de veces, reduciendo un poco el error de la red en cada iteracion. Al igual que con los
perceptrones, escoger una learning rate adecuada es muy importante. Una learning rate de-
masiado pequena haréd que el algoritmo aprenda muy lentamente, mientras que una learning
rate demasiado grande puede hacer que el algoritmo no llegue a converger, y que entre en
bucle sin mejorar la red.

4 Algoritmos de multiplicacion de matrices

Un area en la que la computacion cuantica podria beneficiar substancialmente a la inteligen-
cia artificial es la implementacion de algoritmos mas eficientes. Existen muchos algoritmos
cudnticos que, utilizando diversas técnicas, realizan el mismo célculo que un algoritmo clasico
pero con menor complejidad computacional.

La multiplicacion de matrices es uno de los algoritmos que mas efecto tendria mejorarlo,
ya que para matrices bastante grandes su calculo demanda muchos recursos. Ademds, como
ya se ha visto en los apartados 3.2 y 3.3.1, es uno de los cédlculos mas utilizados a la hora
de entrenar y ejecutar redes neuronales, el principal tipo de modelo de inteligencia artificial
actual. La implementaciéon de algoritmos mas eficientes de multiplicacién de matrices podria
reducir substancialmente el coste computacional requerido por los modelos de inteligencia
artificial.

Empezaremos viendo los algoritmos actuales para la multiplicacién de matrices, y luego
veremos los algoritmos cudnticos. Por ltimo, también realizaremos un andlisis comparativo
de la posible ahorro computacional que se podria realizar en redes modernas.

4.1 Algoritmos clasicos
Existen varios algoritmos de computacién clasica para calcular la multiplicaciéon de dos ma-

trices. El algoritmo mas sencillo es el algoritmo iterativo, que se basa en calcular uno a uno
los resultados de la multiplicacion:

Entradas: A (matriz n x m) y B (matriz m x p)
C <+ matriz n x p con todos los valores a 0
forvdelando
for jdelapdo
for kde 1 amdo
Cij < Cij + A By
end for
end for
end for

Figura 4.1: Algoritmo iterativo de multiplicacién de matrices. Fuente: elaboracién propia

Este algoritmo tiene complejidad ©(nmp). Si lo considerdsemos con matrices cuadradas (n =
m = p), entonces nos quedarfa la complejidad ©(n®). Aunque este algoritmo no es muy
eficiente, lo utilizaremos de base a la hora de comparar el resto de algoritmos.

39

40 ALGORITMOS DE MULTIPLICACION DE MATRICES

4.1.1 Algoritmo de Strassen

El algoritmo de Strassen, publicado por Volker Strassen en 1969 [28], es el primer algoritmo
de multiplicacién de matrices subctbico. Con su publicacién, Strassen demostré que la mul-
tiplicacién de matrices se podia reducir mas que ©(n?), lo que resulté en méas investigacién y
en el descubrimiento de algoritmos de multiplicacién de matrices con complejidades atin més
reducidas.

Para realizar la multiplicacion C' = AB, el algoritmo primero divide las matrices A, By C
en 4 matrices de igual tamano:

A A By1 B
s (11 12) B (11 12) C— <011 012> (4.1)
Ao A By Bao Co1 Co
Para realizar la divisién, es necesario que ambas dimensiones de la matriz sean pares. En caso
de que una de las dimensiones sea impar, se le anadird una fila o columna de Os a la matriz

para hacer que la dimensién sea par, y que se pueda dividir en 4 matrices del mismo tamano.
Esta dimensién extra luego se descartara a la hora de obtener el resultado.

La divisién de C' en 4 matrices nos permite calcular C a partir de C11, Cia, Co1 y Caa, que
a su vez las podemos calcular a partir de las subdivisiones de A y B:

Cn = A1 B + A12Bo
Cia = A11B12 + A12B22
Co1 = A91B11 + A2aBay
Cog = A1 B12 + A2aBao

(4.2)

Estas ecuaciones no nos ahorrarian nada, ya que requeririamos 8 multiplicaciones de matrices
de la mitad de tamano, que equivale a la complejidad de una multiplicacién de matriz de
tamafio normal (8 -n/2-m/2-p/2 = nmp). La clave del algoritmo de Strassen en calcular
ciertos valores intermedios para ahorrarnos una de las multiplicaciones. Definiremos de la
siguiente forma los 7 valores intermedios que utilizaremos. Como se puede ver, cada uno de
los valores se calcula utilizando una tnica multiplicacién de matrices:

My = (Aq1 + Ag2)(By1 + Ba)

M; = (Agy + Az)B1y

M3 := A11(Bi2 + Ba2)

My = A (B2 + Bi1) (4.3)
My = (A1 + A12)Bao

Mg = (A1 + A11)(Bi11 + Bia)

M7 = (A12 + A22)(Ba1 + Ba)

A partir de estos 7 valores intermedios, podemos calcular C71, C19, Co1 y Cog a partir de los
7 valores intermedios M;, y por lo tanto el algoritmo se ahorra una de las 8 multiplicaciones
de matrices.

4.1. ALGORITMOS CLASICOS 41

Ci1 = My + My — Ms + My
Cra = M3 + M5
Co1 = Ms + My
Co2 = My — Ms + M3 + Mg

(4.4)

El algoritmo de Strassen aplica este proceso de forma recursiva hasta que las matrices sean
suficientemente pequenas (por ejemplo, hasta que una de las dimensiones llegue a 1). A partir
de todo esto, podemos ya definir el algoritmo de Strassen:

Entradas: A (matriz n x m) y B (matriz m X p)
ifn=1vm=1Vp=1then
C' < multiplicacionlterativa(A, B)
else
A11, A12, Agl, A22 — d1v1d1rEn4(A)
BH, Blg, BQl, B22 — diVidiI‘EH4(B)
M, < strassen(Aj1 + Ago, B11 + Baa)
My « strassen(Aa; + Ago, Bi1)
M3 < strassen(Aj1, Bia + Ba2)
My + strassen (A, Boy + Bi1)
My < strassen(Aj1 + A1z, Ba2)
Mg < strassen(Az; + A1, Bi1 + Bi2)
M7 < strassen(Ajo + Aga, Ba1 + Bag)
C1y < recortar(My + My — Ms + M7,n/2,p/2)
C19 < recortar(Ms + Ms,n/2,p/2)
Cy1 < recortar(Mas + My, n/2,p/2)
Cyy < recortar(My — My + Ms + Mg, n/2,p/2)
C «+ juntar4(C’11, C1a,Co1, 022)
end if

Figura 4.2: Algoritmo de Strassen. Fuente: elaboracién propia

Las funciones auxiliares utilizadas en el algoritmo anterior son las siguientes:

o strassen(A, B): la funcién principal del algoritmo. Se una para realizar llamadas recur-
sivas.

o multiplicaciénlterativa(A, B): algoritmo iterativo de multiplicacién de matrices.

o dividirEn4(A): divide una matriz en 4 submatrices de igual tamano. Si alguna de las
dimensiones son impares, la expande con una fila/columna de ceros.

o recortar(A, m, m): devuelve una matriz con los mismos elementos pero con tamano
n X m, descartando los elementos que se queden fuera de la matriz original.

42 ALGORITMOS DE MULTIPLICACION DE MATRICES

o juntard(A, B): junta 4 submatrices de igual tamatio para construir una matriz a partir
de ellas.

En cada iteracién, para calcular la multiplicacién de matrices de tamano n X n se realizan 7
multiplicaciones de tamaifio n/2 x n/2, y muchas sumas y restas. Si f(n) es la complejidad
del algoritmo para multiplicar matrices n X n, nos queda la siguiente relacién de recurrencia:

fn)=7-f (g) +0 (n?) (4.5)

El término O(n?) es la complejidad de las sumas y restas, que como son de matrices n/2xn,/2,
serfan O((n/2)?) = O(n?). Resolviendo esta relacién de recurrencia, nos queda la siguiente
complejidad para el algoritmo de Strassen:

J(n) = O(nl*7) ~ O(n>™7) (4.6)

Como podemos ver, la complejidad es menor que la del algoritmo iterativo. No obstante, este
algoritmo requiere muchas més sumas y restas de matrices, cosa que introduce una constan-
te computacional bastante grande y hace que este algoritmo solo sea mejor que el algoritmo
iterativo para matrices grandes. En complejidad espacial, una implementacién basica del algo-
ritmo de Strassen requeriria O(n?) de espacio, mucho mas que el O(1) del algoritmo iterativo.
No obstante, utilizando ciertas optimizaciones y reciclando el espacio en las iteraciones, se
puede implementar con O(1) de espacio adicional [29].

4.1.2 Algoritmo de Coppersmith-Winograd

Otro de los algoritmos més importantes de multiplicacién de matrices es el algoritmo pu-
blicado por Don Coppersmith y Shmuel Winograd en 1990 [30]. Este algoritmo, nombrado
Coppersmith-Winograd, fue el mejor algoritmo conocido de multiplicacién de matrices hasta
2010. Aunque el algoritmo en si es demasiado complejo para explicarlo aqui, la idea bésica
es la misma que para el algoritmo de Strassen: encontrar una manera de multiplicar dos
matrices n X n con menos de n® multiplicaciones, y aplicarlo recursivamente a matrices mas
y més pequefas. La versién original del algoritmo obtiene una complejidad de O(n2376).

El mejor algoritmo actual tiene una complejidad ligeramente menor, de O(2%372) [31]. Este
algoritmo estd basado en la misma técnica que el algoritmo de Coppersmith-Winograd y
se publicé en 2023. Como sus complejidades son tan similares, utilizaremos el algoritmo de
Coppersmith-Winograd en el andlisis comparativo (ver apartado 4.3)

4.2 Algoritmos cuanticos

Aprovechando las propiedades de los ordenadores cudnticos, es posible construir algoritmos
de multiplicacién de matrices con complejidades més reducidas que los algoritmos clasicos. En
este trabajo estudiaremos tres de los principales y realizaremos una andlisis de complejidad
entre ellos y los algoritmos actuales de multiplicacién de matrices.

4.2. ALGORITMOS CUANTICOS 43

4.2.1 Por test de intercambio (swap test)

Este algoritmo cudntico utiliza una rutina cudntica conocida como Swap test (test de inter-
cambio). Esta rutina permite estimar el producto interior de dos vectores de cubits, que se
puede luego utilizar para multiplicar dos matrices. Para realizar la multiplicacién de matrices
C = AB, sea A;, la fila i de la matriz A, B,; la columna j de la matriz B, xy el producto
interior y ||v|| el médulo del vector v, podemos calcular la multiplicacion de matrices con la
siguiente férmulas:

Cij = || Ao [| Bojl| Aie Bej (4.7)

Las magnitudes de los vectores se pueden calcular de manera sencilla en O(n?). El tinico paso
de esta férmula que no podemos calcular con complejidad cuadratica son los n? productos
interiores, ya que si los calculamos directamente cada uno llevaria O(n), por lo que tendriamos
complejidad O(n?). Para reducir esta complejidad emplearemos un circuito cudntico conocido
como el Swap test, que permite, tras ejecutar la rutina multiples veces, cada vez producir una
mejor aproximacion del producto interior de dos vectores. Aqui solo se explicard la manera
de construir el circuito para 1 cibit, ya que cualquier otro caso es demasiado complejo de
realizar a mano. No obstante, se puede construir una versién que funciona para vectores de
cualquier nimero de cubits con solo ligeramente mas complejidad que en el caso de 1 cubit
[32]. El algoritmo de Swap test se basa en el siguiente circuito cuantico:

0) H H A=

|#)
[4)

Figura 4.3: Circuito para una iteracién de Swap test de 1 ctbit. Fuente: elaboracién propia

Este circuito de 3 cibits, primero aplica una puerta Hadamard (ver apartado 2.3.2) al primer
ctbit, luego aplica una puerta CSWAP (ver apartado 2.3.5.4), utilizando el primer ciibit como
control. Luego vuelve a aplicar una puerta Hadamard al primer cibit. Por tltimo, medimos
el primer cubit, para ver si produce 0 o 1.

El circuito cuantico empieza con el estado |0, ¢,v), siendo los estados ¢ y 1 variables
desconocidas. Después de la primera puerta H, el circuito pasa al siguiente estado:

(HeI®I)[0,¢,9)=HI[0)®|¢,v)

_ o)+ 1)
== ol (4.8)
_10,6,%) + 11,6, 4)

V2

44 ALGORITMOS DE MULTIPLICACION DE MATRICES

Tras la puerta SWA P controlada, que invierte |¢) y |¢) cuando el primer cibit vale 1, pasamos
a este estado:

10,¢,9) +11,¢,%) _ [0,6,%) + 11,4, ¢)
V2 V2

Por dltimo, aplicamos la segunda puerta Hadamard al primer cibit, que nos deja en el

siguiente estado:

CSWAP (4.9)

|O7¢7¢> + ’17¢7¢> — |07¢a¢> + |17¢7d}> + ’07¢7¢> B |1a¢7¢>
V2 2

Tras todo esto, lo iinico que nos queda es medir el primer cibit, para lo que calcularemos la

probabilidad de que el sistema se encuentre en cada uno de los casos. Si realizamos el calculo,
nos quedan los siguientes amplitudes para cada uno de los 8 estados:

(HoI®I) (4.10)

|z) g P(|z)) = |ag|?

000) P00 | ool
001) | (dov1 + ¢1%0)/2 | [¢ot1 + ¢1¢0]*/4
010) | (¢otp1 + d190)/2 | |dotr + ¢1¢o|*/4
011) P11 |prep1[?
|100) 0 0

1101) | (dov1 — d100)/2 | [doth1 — 1¢bol*/4
110) | (¢1v0 — dov1)/2 | [¢1¢0 — potn|?/4
|111) 0 0

Tabla 4.1: Resultado de un Swap test de 1 cibit respecto a |@,). Fuente: elaboracién propia

La tabla contiene las amplitudes de cada estado a, junto con la probabilidad de cada uno de
los estados, que es a2. Si ahora sumamos las probabilidades de los estados cuando el primer
cibit vale 0 (los estados |000), [001), [010) y |011)) y cuando vale 1 (los estados |100), |101),
|110) y [111)) y simplificamos, podemos obtener las probabilidades de que el primer ctbit
valga 0 o 1 tras ejecutar el algoritmo:

P (primer cibit = 0) = |¢0¢0]2 +]¢1¢1‘2 + W

_ 2
P (primer ctbit = 1) = —|¢0¢1 2¢1¢0|

(4.11)

Estos resultados son muy interesantes, ya que todos los componentes paralelos (|¢oto|? vy
|p1101]?) pertenecen al estado |0), pero los componentes perpendiculares (|¢o1 + @10/ ¥
|porb1 — P1100|?) pertenecen a ambos estados. Cuando los estados |¢) y [¢) son ortogonales,
hay un 50% de que el primer ctbit sea 0 y otro 50% de que sea 1. Si |¢) y |¢)) son paralelos,
entonces el primer cibit siempre serd 0. De forma general, cuanto mas paralelos sean los
vectores de cubits |¢) y [¢), mayor sera la probabilidad de que el primer ctbit sea 0.

4.2. ALGORITMOS CUANTICOS 45

Si ejecutamos el algoritmo k veces, utilizando k copias de |¢) y [¢) ya preparadas, entonces
podemos estimar el producto interior de |¢) y |¢). Siendo m; el resultado de medir el primer
cubit cada una de esas veces, tenemos la siguiente formula para aproximar el resultado del
producto interior de |¢) v |¢).

1—

=

k
> m (4.12)

Con esta formula podemos obtener con una precision arbitrariamente alta el resultado del
producto interior, ya que para mayor precision simplemente hay que ejecutar el algoritmo
mas veces. Como la precision es independiente del tamano de las matrices a multiplicar, no
aumenta la complejidad, por lo que este algoritmo es O(1), sin tener en cuenta la preparacién
de los cubits.

Este es el caso de 1 cubit. Para vectores de varios cubits, podemos utilizar el mismo
algoritmo, modificado para que la puerta SWAP controlada se realice para cada una de las
parejas |¢), v |¢); de los vectores de cubits |¢) y |1)):

0) H H A=

|#) —
) —#

Figura 4.4: Circuito para una iteracién de Swap test de n cibits. Fuente: elaboracién propia

La tnica desventaja con este algoritmo, es que construir y ejecutar la puerta Swap contro-
lada para n cdbits no es constante. Utilizando ciertos trucos a la hora de ejecutar todas las
puertas necesarias para todos los cibits de la matriz, podemos reducir esta complejidad a
O(log® polym), donde 1 < ¢ < 2y polym es un polinomio de la cantidad de ctbits a preparar
[33]. Es aun un problema abierto saber el valor exacto de ¢y el menor polinomio posible de
m, por lo que nosotros ignoraremos ese factor en el analisis. Como ese factor es logaritmico,
tampoco perdemos mucha precision en el andlisis si lo ignoramos.

Ahora, lo Unico que nos falta es construir todo el algoritmo para multiplicar matrices,
utilizando las rutinas que hemos visto. Utilizaremos las siguientes funciones auxiliares a la
hora de describir el algoritmo:

» prepararEstados(A, B): prepara los estados cudnticos necesarios para ejecutar un swap
test para cada valor de las matrices A y B.

o swapTest(|x)): ejecuta un swap test para cada uno de los valores de las matrices A
v B y devuelve el valor en una matriz de resultados que corresponde al resultado de
cada swap test (0 o 1). Recibe como entrada los estados cudnticos ya preparados para
realizar los swap tests de forma eficiente.

46 ALGORITMOS DE MULTIPLICACION DE MATRICES

o calcularProductosMagnitudes(A, B): calcula ||As||||Bej|| para todos los 7,5 € [1,n].

A partir de estas funciones, el algoritmo completo que calcula la multiplicacién matricial
C = AB utilizando swap tests es el siguiente:

Entradas: A (matriz n x n), B (matriz n x n) y k (iteraciones de cada swap test)
M < calcularProductosMagnitudes(A, B)
R < matriz n X n con todos los valores a 0
for ide1lakdo

|1) + prepararEstados(A, B)

R <+ R+ swapTest(|y)))
end for
C < matriz n X n
for i de 1 an do

for jde 1l ando

Cij < Mi; (1 = 1 Rij)

end for

end for

Figura 4.5: Algoritmo de multiplicacién de matrices basado en Swap test. Fuente: elaboracién propia

Como la funcién swapTest() realiza un swap test para cada elemento de las matrices A y B, y
cada test tiene complejidad O(log® poly n?), la complejidad de la funcién es de O(n? log® poly n?).
Ignorando el factor polindmico para facilitar el andlisis, nos queda O(n?). La complejidades
de prepararEstados() y calcularProductosMagnitudes() son O(n?), por lo que la complejidad
total sigue siendo de O(n?).

Teniendo todo esto en cuenta, la complejidad final del algoritmo es de O(n? k), siendo
k el nimero de iteraciones. Si cogemos una k que sea constante (un nimero de iteraciones
que no dependa del tamafo de las matrices), entonces tenemos la complejidad O(n?). Esta
complejidad es mucho menor que la que encontramos incluso en el mejor de los algoritmos
clasicos (O(n?*3)), por lo que podria mejorar mucho la multiplicacién de matrices si los
ordenadores cuanticos se vuelven asequibles.

4.2.2 Otros algoritmos

Existen muchos otros algoritmos cuanticos para multiplicacion de matrices, como algoritmos
basados en el algoritmo HHL (un algoritmo cuédntico de resolucién de sistemas de ecuaciones
[34]) y otros basados en SVE (un algoritmo de estimacién de descomposicién en valores
singulares [35]). Estos algoritmos no tienen complejidades que sean faciles de comparar con
los algoritmos clésicos, ya que su complejidad depende de la matriz de entrada.

Maés concretamente, segun el andlisis de complejidades realizado en [32], obtenemos la
complejidad O (/@(A)2n1'75 + n2) para el algoritmo basado en HHL y O (K,(A) n2'25) para el
algoritmo basado en SVE, siendo x(A) el nimero de condicién de la matriz A al realizar el
calculo C' = AB. El nimero de condicién de una matriz X se define de la siguiente forma:

4.3. ANALISIS TEORICO DE LAS COMPLEJIDADES 47

R(X) = [1X]] - [1X 7] (4.13)

Como se puede ver en la ecuacién 4.13, k(A) depende de A, por lo que las complejidades de
los algoritmos basados en HHL y SVE dependen de los valores de la matriz de entrada. Es
por esto que estos algoritmos no se incluiran en el anélisis comparativo de algoritmos, y solo
se analizara el algoritmo cuantico basado en swap tests.

4.3 Analisis teérico de las complejidades

En este capitulo hemos estudiado varios algoritmos clasicos y cuanticos de multiplicacién
de matrices. En la tabla 4.2 se puede ver un pequeno resumen de las complejidades de los
algoritmos estudiados.

Algoritmo Complejidad
Iterativo O(n?)
Strassen O(nl°927) =~ O(n?807)

Coppersmith-Winograd O(n?379)
Basado en Swap test O(n?)

Tabla 4.2: Complejidades de los algoritmos estudiados. Fuente: elaboracién propia

Para este analisis, utilizaremos el tamano de las matrices de atencién de ciertas redes neuro-
nales modernas. Este analisis serd una estimacién basada en la complejidad de los algoritmos,
e ignora las constantes temporales de los algoritmos y muchas de las optimizaciones que se
realizan en la multiplicaciéon de matrices en las redes neuronales modernas. No obstante, este
analisis nos puede dar una aproximacién del speedup que podriamos obtener si estos algorit-
mos se implementasen en el entrenamiento de los modelos de inteligencia artificial actuales.

Para determinar el tamano de las matrices con el que calcularemos la aproximacion, utili-
zaremos las matrices de embedding, ya que todos los modelos que compararemos son trans-
formers [36] y estas matrices suelen ser las matrices mds grandes de este tipo de modelo.
Aproximaremos el resultado del embedding como una tnica matriz cuadrada del mismo ta-
mano. Analizaremos los siguientes modelos:

Modelo Matriz de embedding | Matriz cuadrada equivalente

GPT-2 1024 x 1600 1280 x 1280

GPT-3 2048 x 12288 5016.6 x 5016.6

GPT-3.5 4096 x 12288 7094.5 x 7094.5

GPT-4 32768 x 3072 10034 x 10034
GPT-4 Turbo 128000 x 3072 19830 x 19830

Tabla 4.3: Tamano de embedding de los modelos analizados. Fuente: elaboraciéon propia

Aproximaremos el coste de ejecucién de cada modelo como el coste de multiplicar dos matrices

48 ALGORITMOS DE MULTIPLICACION DE MATRICES

del mismo niimero de elementos que la matriz de embedding. Utilizaremos las dimensiones
de una matriz cuadrada que tenga el mismo niimero de elementos para estimar la n de cada
modelo. A partir de la n del modelo, estimaremos su coste para cada algoritmo utilizando la
complejidad, donde sustituiremos la n de la complejidad por la n del modelo. Obtenemos los
siguientes resultados:

Modelo Iterativo Strassen Coppersmith-Winograd | Swap test
GPT-2 2.097 x 10° | 5.272 x 10% 2.414 x 107 1.638 x 10°
GPT-3 1.263 x 10 | 2.437 x 1010 6.197 x 108 2.516 x 107
GPT-3.5 3.571 x 10! | 6.450 x 1010 1.412 x 109 5.331 x 107
GPT-4 1.010 x 102 | 1.707 x 10! 3.217 x 10 1.007 x 108
GPT-4 Turbo | 7.798 x 10'2 | 1.155 x 102 1.623 x 1010 3.932 x 108

Tabla 4.4: Estimacion del coste de ejecucion de los algoritmos estudiados. Fuente: elaboracién propia

Modelo Strassen | Coppersmith-Winograd | Swap test
GPT-2 25.1% 1.151% 0.0781%
GPT-3 19.3% 0.490% 0.0199%
GPT-3.5 18.1% 0.395% 0.0141%
GPT-4 16.9% 0.318% 0.0099%
GPT-4 Turbo | 14.8% 0.208% 0.0050%

Tabla 4.5: Coste de ejecucién respecto al algoritmo iterativo. Fuente: elaboracién propia

4.3.1 Conclusiones del analisis

Como se puede ver en las tablas 4.4 y 4.5, el algoritmo basado en swap tests proporciona una
reduccién enorme de coste computacional, incluso teniendo en cuenta ya la reduccién propor-
cionada por el algoritmo de Coppersmith-Winograd. Incluso si su implementacién requiriese
de una gran cantidad de cédlculos adicionales, como la diferencia es tan grande con el resto
de algoritmos el beneficio podria seguir siendo inmenso.

Ademas, como el beneficio crece a medida que crece la complejidad del modelo, si los
modelos de inteligencia artificial se van volviendo mas y mas complejos, el incentivo para
desarrollar este tipo de procesadores crecera con el tiempo. También existen muchos otros
algoritmos cudnticos, algunos con complejidades menores que el algoritmo de swap tests
estudiado, por lo que el beneficio real podria llegar a ser mayor que el calculado en este
analisis, que ya es bastante optimista.

5 Busqueda de Grover

La busqueda de Grover (Grover’s search en inglés) es un algoritmos de busqueda que apro-
vecha las propiedades de la computacién cuantica para buscar elementos [37]. El algoritmo
utiliza una funcién de busqueda s(x) y busca algin elemento xz que devuelva s(z) = 1. El
algoritmos trata la funciéon de bisqueda como una caja negra, lo que significa que no aprove-
cha ninguna propiedad especifica de la funcién. La busqueda de Grover realiza la busqueda
de un elemento en O(y/N), siendo N el ntimero total de elementos. Como se demostré en
[38], esto es 6ptimo, ya que cualquier algoritmo de biisqueda cuédntico tendrda como minimo
la complejidad temporal Q(N).

Aunque la bisqueda de Grover es un buen candidato para mejorar la eficiencia de muchos
algoritmos, no se puede aplicar en todos los casos. Esto se debe, como veremos en el apartado
5.1.2, a que tenemos que construir eficientemente una puerta cudntica que dependen de s(x).
No obstante, no podemos simplemente evaluar s(x) para todos los elementos, ya que entonces
la complejidad del algoritmo serfa O(N). Dependiendo de ciertas propiedades de la funcién
s(z) concreta y de los elementos que estemos buscando, en ciertos casos es posible la cons-
truccién eficiente de esa puerta cuantica. En el apartado 5.2 podemos ver algunos algoritmos
de inteligencia artificial en los que se ha conseguido integrar la buisqueda de Grover para
conseguir una mejora de la complejidad temporal.

5.1 Algoritmo de Grover

El algoritmo de Grover se puede dividir en tres pasos principales: inicializacion, busqueda y
inversion sobre la media. El primer paso solo se realiza en la primera iteraciéon, mientras que
los dos ultimos se realizan una vez para cada iteracion.

5.1.1 Inicializacién

El primer paso en el algoritmo es inicializar el estado. Al principio, como no tenemos nada de
informacién a cerca del problema a resolver, tendremos que inicializar cada uno de los cibits
a una superposiciéon entre 0 y 1. Especificamente, lo realizaremos de tal manera que cada
uno de los posibles estados tenga la exactamente misma amplitud. Esto se puede realizar de
manera sencilla, inicializando los ctbits a |0™) y aplicando la puerta Hadamard a todos los
cubits del sistema.

Para una busqueda en un espacio de N = 2" elementos, necesitaremos inicializar n cubits,
y por lo tanto tendremos que aplicarles una puerta Hadamard paralela de n cubits. Si N
no fuese una potencia de dos, entonces necesitariamos n = [logs N| cubits. Tras aplicar la
inicializacién a los cibits, nos queda el siguiente estado cuantico:

r¢>=H®“rO”>=jN S (5.1)

ze{0,1}m

49

50 BUSQUEDA DE GROVER

Como se puede ver, las amplitudes de todos los estados son 1/ V/N, por lo que todos los
estados tienen la misma probabilidad ((1/v/N)? = 1/N). Este estado es importante para
construir ciertas de las puertas que utilizaremos en el algoritmo, por lo que lo llamaremos
|¢). Para entender mejor el algoritmo, también incluiremos en cada paso una visualizacién de
como el algoritmo cambia las amplitudes de todos los estados de un sistema de 3 cubits (ver
figura 5.1). Como durante la ejecucién de este algoritmo todas las amplitudes serdn ntimeros
reales, las visualizaremos utilizando un grafico de barras.

L 00 Antes de inicializar
Ui Después de inicializar
<
=
=
gy
g 1
< 7l a
0

I
j101) |110) |111)

I I I I I
000) [001) [010) [011) [100)

Figura 5.1: Inicializacién de una busqueda de Grover para 8 elementos. Fuente: elaboracién propia

5.1.2 Buasqueda

Después de inicializar el estado, el siguiente paso es la busqueda. Este paso invierte las
amplitudes de todos los estados que estamos buscando. Dicho de otro modo, invierte las
amplitudes de todos los estados para los que s(x) = 1. Construiremos una puerta logica para
realizar esta operacién. Dada la funcién s(x), podemos construirla a partir de la siguiente
ecuacion:

Usla) = (=1)*@ |a) (5.2)

Entonces, para construir Us simplemente tenemos que crear una matriz diagonal con los
valores (—1)*(®) para cada estado x:

Uézwﬁag(C_demm%(_lfﬂmiﬂw‘w(_1VUL1»>

(—1)00--0) 0 . 0
0 (cuplomy g (5.3)
0 0 .. (c1pnD)

Por ejemplo, para un sistema de 4 ctbits y una funcién s que devuelve 1 para [10) y 0 para

5.1. ALGORITMO DE GROVER 51

los demas estados, tendriamos la siguiente matriz:

10 0 0
U, = diag(1,1,~1,1) = gé_ﬂ 8 (5.4)
0 0 0 1

Una vez construida la puerta U, tenemos que aplicarsela a los estados iniciales. Visualmente,
para una funcién de biisqueda para la que s(|010)) = 1, tendriamos la siguiente representacion:

|1 T

o Iniciales
- U0 Después de aplicar Uy ||

Amplitud

Bl

I
1100) |101) [110) [111)

I I I
000) |001) [010) |011)

Figura 5.2: Amplitudes tras aplicar U en una bisqueda de Grover. Fuente: elaboracién propia
Como se puede ver, solo se han invertido las amplitudes de los estados que estamos buscando.

5.1.3 Inversién sobre la media

El ultimo paso del algoritmo de Grover es lo que se conoce como “Inversién sobre la media”.
Esta puerta, para cada amplitud, la invierte respecto a la amplitud media de todos los estados
base. Si @ es la amplitud media para todos los estados base de |¢)), podemos definir el
comportamiento de U; de la siguiente forma:

Ulb)=), (20— ag)lz) (5.5)
ze{0,1}™
De esta forma, para cada estado |x) su amplitud pasard de o, a 20—, reflejando la amplitud
respecto a la media @. Esta puerta, aprovechando ciertas propiedades de la fisica cuantica
y de los tensores, se puede implementar de forma sencilla y eficiente. Si |¢) es el estado del
sistema tras ser inicializado, se puede implementar con la siguiente expresion:

Ui=2|¢){¢| — 1 (5.6)

Esta expresion, que utiliza una proyeccién tensorial (|¢) (¢|), implementa el comportamiento
que hemos visto sin necesidad de calcular la media de las amplitudes. Como esto solo depende

52 BUSQUEDA DE GROVER

de |¢), que en si solo depende del nimero de ctibits del sistema, se puede precalcular U;.
Visualmente, tras aplicar U;, tendriamos las siguientes amplitudes:

1 08 Tras aplicar U,
U0 Tras aplicar U;

e
o
T

|

B
3
7
ot
:
H
H
|

—05] .
I I I I I I I I
|000) |oo1) [010) [011) [100)

I
I101) [110) |111)

Figura 5.3: Amplitudes tras 1 iteracién del algoritmo de Grover. Fuente: elaboracién propia

5.1.4 lteraciones

Todo lo que hemos visto hasta ahora describiria una sola iteracién del algoritmo de Grover.
Para aplicar el algoritmo al completo, tras inicializar los estados, hay que aplicar Us y U;
varias veces. Para maximizar la probabilidad de los estados para los que s(z) = 1, tenemos
que aplicar Us y U; k veces, donde k es la siguiente expresion:

T | N
ey o

M es la cantidad de estados para los que s(x) = 1, 0 lo que es equivalente, M =3 13n s(2).
Si aplicamos el algoritmo mas veces que las que son éptimas, entonces @ se volvera negati-
vo, por lo que al aplicar U; estariamos reduciendo la probabilidad de los estados. Podemos
expresar el algoritmo de Grover con el siguiente circuito cuantico:

repetir k veces

___________ N
1

0") —— H&" | Us - U

1
1
1
! 1
]

A=

- === -

Figura 5.4: Circuito cudntico para el algoritmo de Grover. Fuente: elaboracién propia

Visualmente, si ejecutamos el algoritmo iteracién a iteracién, podemos ver como progresiva-
mente aumenta la probabilidad de los estados para los que s(z) = 1.

5.1. ALGORITMO DE GROVER 53

1 . 08 Amplitudes iniciales | |
] lm Iteracién 1
0.75 + (o Iteracién 2 e
<
]
£ o5) |
=
E
0 O o O O o o o

000) [001) [010) |o11) |100) |101) |110) [111)

Figura 5.5: Amplitudes de una btisqueda de Grover del estado |010). Fuente: elaboracién propia

Como se puede ver, tras cada iteracion, el algoritmo de Grover aumenta las amplitudes de
los estados que estamos buscando (|010) en este caso). Como tenemos 8 elementos (N =
8) y tenemos 1 elemento valido (M = 1), podemos calcular la cantidad de iteraciones que
deberiamos aplicar a partir de la siguiente férmula:

T | N T |8
’“{4 MJ:L 1J: (58)

Como k = 2, si realizdsemos otra iteracion mas, disminuiriamos la probabilidad de los estados
que estamos buscando, por lo mejor es medir realizar dos iteraciones y luego medir el estado.
No obstante, como se puede ver en el gréifico, la probabilidad de que el estado resultante sea
el que queremos no es 100%. El algoritmo de Grover solo nos asegura que, tras realizar el
ntmero de iteraciones necesarias, tendremos méas del 50% de probabilidad de encontrar un
elemento para el que s(z) = 1.

5.1.5 Algoritmo completo

Para remediar este problema, si no encontramos un elemento valido podemos simplemente
volver a ejecutar el algoritmo hasta que encontremos. Como la probabilidad de encontrar un
elemento es > 50%, de media lo encontraremos como mucho en 2 intentos, por lo que solo
anade una constante y no afecta a la complejidad del algoritmo.

Teniendo en cuenta esto, podemos especificar el algoritmo de Grover al completo:

54 BUSQUEDA DE GROVER

Entradas: Us, s(x), N, M

n < [logy N

k< |m/4\/N/M |

16) + HE™ [om)

Us — 216) (6] — I

sol <0

while sol = 0 do
) HE™ (o)
for jde1akdo

) < Ui Us [¥)

end for
x <+ medir(|v))
sol = s(x)

end while

Figura 5.6: Algoritmo de Grover para M conocida. Fuente: elaboracién propia

Como k es proporcional a /N /M, la cantidad de iteraciones del algoritmo también es pro-
porcional a la raiz cuadrada de N /M, por lo que tenemos la siguiente complejidad:

O(V/N/M) (5.9)

Si asumimos el peor caso de M = 1, podemos simplificar la complejidad:

O(VN) (5.10)

Este algoritmo solo funciona si conocemos M, la cantidad de elementos para los que s(z) = 1.
Cuando no sepamos la cantidad de elementos, podemos simplemente ejecutar el algoritmo
con k = N,N/2,N/4...N/2!. Con una probabilidad muy grande (> 50%) el algoritmo
encontrara una solucién antes de la iteracién ¢t = loga(IN/M). Si el algoritmo no ha encontrado
una solucién para cuando 2! > N, simplemente podemos volver a ejecutar toda la secuencia.

Como la probabilidad de encontrar un resultado correcto en una secuencia es de mas de
50%, la cantidad de secuencias media no superard 2, por lo que solo supondrd una cons-
tante adicional, y no modificara la complejidad de O(v/ N). El algoritmo modificado seria el
siguiente:

5.2. APLICACIONES EN LA INTELIGENCIA ARTIFICIAL 99

Entradas: Us, s(z), N
n < [logy N1, sol < 0
16) — HE 0", U; 216) (6] — 1
while sol = 0 do
M+ 1
while M < 2NV A sol =0 do
k« |m/4\/N/M]
) HE™ [o7)
foridelakdo
) < Ui Us |4)
end for
x medir(|y))
sol = s(x)
M+ 2M
end while
end while

Figura 5.7: Algoritmo de Grover para M no conocida. Fuente: elaboracién propia

5.2 Aplicaciones en la inteligencia artificial

Utilizando la busqueda de Grover es posible construir algoritmos de machine learning que
sean mas rapidos que los que seria posible en un ordenador clasico. Para muchas de las
aplicaciones de inteligencia artificial, el uso del algoritmo de Grover obtiene un speedup de
O(y/ f(n)), siendo O(f(n)) la complejidad algoritmica original del algoritmo. Algunos de las
aplicaciones para las que se han ideado algoritmos que aprovechan la busqueda de Grover
son las siguientes:

o K vecinos més préximos, un algoritmo de aprendizaje supervisado [39]

o Clustering mediante k-medianas, un algoritmo de aprendizaje no supervisado [40]
o Célculo de atencion para transformersy redes neuronales recurrentes (RNNs) [41]
o Active learning agents y otros algoritmos de aprendizaje por refuerzo [42]

o Entrenamiento de perceptrones [43]

Aunque de momento no se ha conseguido aprovechar el potencial de la busqueda de Grover
para todos los tipos de algoritmos de machine learning, en los casos en los que si se ha
conseguido aprovechar el beneficio es muy grande. El speedup obtenido es la raiz del coste
total, por lo que podria reducir los calculos necesarios varios érdenes de magnitud a la hora
de entrenar modelos muy complejos.

6 Computacion cuantica adiabatica

La computacién cudntica adiabética (adiabatic quantum computing, AQC en inglés) es un
algoritmo de computacién cuantica que se puede utilizar para resolver problemas de opti-
mizacién con un gran nimero de variables. Aprovechando ciertas propiedades especificas de
la fisica cuédntica, el algoritmo es capaz de resolver problemas de optimizacién complejos en
menos pasos que un ordenador normal. Este tipo de algoritmo no estd basado en puertas
o circuitos cudnticos, si no en otro tipo de computacién cudntica conocida como evolucién
adiabética [44].

6.1 Algoritmo de evolucién adiabatica

La computacién adiabatica consiste en formular el problema de optimizacién que queremos
resolver como los niveles de energia del sistema cudntico, de manera que la solucién del
problema corresponda con el estado con menor energia del sistema. En la mecénica cuantica,
los niveles de energia de cada uno de los estados del sistema se conoce como el Hamiltoniano
del sistema. En otras palabras, tenemos que encontrar un Hamiltoniano H; cuyo estado
cuantico de menor energia coincida con el estado cudntico del sistema que representa la
solucién a nuestro problema. Utilizaremos la notacion |H) | para denotar el estado de menor
energia de un Hamiltoniano H.

Energia

Solucién = [Hy),

Estado del sistema
Figura 6.1: Hamiltoniano que resuelve un problema de optimizacion. Fuente: elaboracion propia
Este paso puede ser un poco complicado, ya que depende del tipo especifico de hardware que
estemos utilizando. Distintas arquitecturas de ordenadores adiabaticos tendran diferentes

maneras de especificar condiciones a sus sistemas, y producirdn Hamiltonianos diferentes.
Mais adelante analizaremos uno de estos tipos de arquitecturas, y veremos como construir

o7

58 COMPUTACION CUANTICA ADIABATICA

Hamiltonianos para resolver problemas en esa arquitectura y como la arquitectura regula los
niveles de energia del sistema para variar el Hamiltoniano.

Una vez hemos encontrado el Hamiltoniano Hy (que es potencialmente muy complejo),
ponemos el sistema a un Hamiltoniano simple, que su estado con menor energia sea conocido.
Este Hamiltoniano, que denominaremos H;, normalmente es un Hamiltoniano con muy poca
energia en uno de sus estados, y mucha mas en cualquier otro. Tras configurar el Hamiltoniano
del sistema a H,, entonces ponemos el sistema al estado con menor energia de H;, |H;) I La
solucion del problema se encuentra en |Hs) IR el estado de menor energia de H ¢. El dltimo paso
es transformar gradualmente el Hamiltoniano del sistema de H; a Hy. Si lo transformamos
de forma suficientemente gradual, el teorema adiabatico [45] nos garantiza que el sistema
se mantendrd en el estado de menor energia, por lo que cuando el Hamiltoniano sea Hy,
el estado del sistema sera la solucién del problema de optimizacién. Este proceso se conoce
como Evolucién adiabatica.

Energia

Estado del sistema

Figura 6.2: Evolucién adiabética de H; a H; pasando por H,. Fuente: elaboracién propia

Calcular la velocidad méxima a la que podemos mover el Hamiltoniano (y por lo tanto,
la complejidad temporal del algoritmo) no es tarea ficil. Primero, necesitamos calcular el
Spectral gap (salto espectral) de un Hamiltoniano. Sea |H) i el estado de menor energia de
un Hamiltoniano, |H) 12 €l segundo estado de menor energia de un hamiltoniano y H) la
energia del estado [¢) para el Hamiltoniano H, entonces podemos calcular el Spectral gap de
un Hamiltoniano utilizando la siguiente férmula:

Ay =H|H) - H[H), (6.1)

Ahora definimos #(t), el hamiltoniano del sistema en el instante ¢. En el instante inicial ¢o
tenemos H(tg) = H;, y consecuentemente en el instante final ¢; tenemos H(ty) = Hy. A
partir de todo esto podemos definir la formula que determina la velocidad v a la que nos
podemos desplazar sin perturbar el sistema.

2
v X < min AH(t)) (6.2)

to Stgtf

6.1. ALGORITMO DE EVOLUCION ADIABATICA 59

Esta velocidad es proporcional al cuadrado del menor Spectral gap de H(t), para tg <t < t;
[45]. Cuando més grande sea el minimo Spectral gap, a mayor velocidad podremos modificar
el hamiltoniano. Como la velocidad es inversamente proporcional a la complejidad temporal,
obtenemos la siguiente complejidad:

@) <i> =0 <(mint0§t§1tf AH(t))Q) (6.3)

Esta complejidad es complicada de comparar a cualquier la de otros algoritmos de optimi-
zacion, ya que depende de los hamiltonianos por los que pase el sistema a la hora de ser
optimizado. No obstante, es posible que para ciertos problemas esta manera de optimizarlos
sea mas rapida que otros métodos de optimizacién. Ademads, se ha demostrado que este tipo
de computacién es equivalente en potencia que a la computacién cudntica basada en puer-
tas légicas cudnticas [46], por lo que no hay ningin problema de optimizacién que se pueda
resolver por otros métodos cudnticos en complejidad O(f(n)) y no por este.

6.1.1 Evolucién adiabatica aproximada

En muchos casos, no queremos una solucién éptima, si no una solucién cercana a la solucién
6ptima. En estos casos, podemos modificar el algoritmo de evolucién adiabdtica para, en
vez de garantizar la solucién 6ptima, garantizar una solucién que esté entre las n mejores
soluciones.

Esto lo conseguimos considerando todos los spectral gaps entre las n mejores soluciones.
Sea |H) n €l estado n de menor energia de H, entonces tendriamos el siguiente spectral gap
entre |H),,, v el siguiente estado de menor energfa, [H) , :

AT =H|H) , — HIH) (6.4)

Entonces, el spectral gap total para los n estados de menor energia de H (las n mejores
soluciones de H), serd el maximo spectral gap de cada uno de los estados:

B = s Ay = a (M) = HIM) i) ©5)
Si se selecciona una n suficientemente grande, este spectral gap serd mucho mayor que el que
hemos visto en la evolucién adiabatica pura. Como la velocidad a la que podemos evolucionar
el sistema es proporcional al cuadrado del minimo spectral gap (ver ecuacién 6.2), aumentar
el spectral gap nos permite aumentar cuadraticamente la velocidad méaxima a la que podemos
evolucionar el hamiltoniano del sistema. Como el tiempo requerido para realizar la evolucién
del hamiltoniano y obtener la solucién al problema que estamos resolviendo es inversamente
proporcional a la velocidad a la que podemos evolucionar el sistema (ver ecuacién 6.3), este
tipo de evolucién adiabatica tendra un tiempo de ejecucién mucho menor que la evolucién
adiabatica pura. Si no es necesario obtener la solucién 6ptima y sirve con obtener una solucién
buena, este tipo de evolucién adiabatica puede proporcionar tiempos de procesamiento mucho
menores.

60 COMPUTACION CUANTICA ADIABATICA

6.2 Problemas de satisfacibilidad

Este tipo de algoritmos son especialmente utiles para problemas de satisfacibilidad, es decir,
problemas en los que tengamos que encontrar alguna solucién que satisfaga todas las restric-
ciones del problema. Estos problemas estdn caracterizados por las restricciones R;, y para
resolver el problema tenemos que encontrar un estado |¢)) que cumpla Ry A Ro A --+ A Ry,
siendo R; una de las M restricciones, que puede ser verdadera o falsa para cada estado. Para
este tipo de problemas, es muy sencillo encontrar el hamiltoniano final H . Para la restriccion
R;, construiremos el siguiente hamiltoniano parcial:

a; si|¢) satisface R;

Hjy) = 6.6
j 1) {bi si |¢) no satisface R; (6.6)

Para todo i, a; < b;, de forma que los estados que cumplan mas restricciones tengan menor
energia. Una vez tenemos los hamiltonianos parciales, podemos construir el hamiltoniano
final H; a partir de ellos:

Hp =) Hj (6.7)
i

Visualmente, obtendriamos una grafica de energia similar a la siguiente:
__ 1
\ / /
2
3
/ _ Hy

Energia

Estado del sistema

Figura 6.3: Hamiltonianos finales para un problema de satisfacibilidad. Fuente: elaboraciéon propia

De esta manera, los tinicos estados para los que H [¢)) es minimo seran los estados que cumplan
todas las restricciones. En el caso de que no exista ningtin estado que cumpla todas, el estado
“solucion” seguird siendo el estado con menor energia.

Para realizar la construccién de los hamiltonianos parciales, se puede hacer de manera mucho
mas general. La tnica restriccién importante para que los hamiltonianos parciales sean vali-
dos, es que haya un salto significativo entre los estados que satisfacen y que no la satisfacen,
de manera que ese salto sea mayor que la diferencia de energia de los estados que si satisfacen
la condicién. Podemos reflejar esto introduciendo dos variables nuevas en la féormula, v§(|v))
y v2(J1)). Estas dos variables miden cudnto difiere el valor real del hamiltoniano con el valor

6.3. ORDENADORES D-WAVE 61

de la férmula ideal que vimos anteriormente.

a; +vi(|Y)) si|¢) satisface R;

’ . : (6.8)
bi +v;(]1)) si|¢) no satisface R;

Hi(lv)) = {

Siempre que v¢(|¥)) y v?(|1)) sean mucho menores que el salto b; — a;, el hamiltoniano servira
para realizar la optimizacién.

6.3 Ordenadores D-Wave

A diferencia de los ordenadores cudnticos basados en puertas légicas, si que existen modelos
comerciales de ordenadores cuanticos adiabaticos. Esto se debe en gran parte a la compania
D-Wave Quantum Systems Inc., que en 2011 lanzé al mercado el primer ordenador cuantico
comercial. El ordenador, nombrado “D-Wave One”, utiliza un chip de 128 ctibits que es capaz
de resolver ciertos problemas de optimizacion.

Figura 6.4: Imagen de un ordenador D-Wave One. Fuente: [47]

El ordenador D-Wave One mide tres metros de alto y mas de dos de largo. Gran parte de este
espacio es para aislar térmicamente el procesador del mundo exterior, ya los procesadores
D-Wave operan a una temperatura de 20mK (—273.13C'), una temperatura tan baja que
esta solo a 0.02 grados del cero absoluto, la temperatura méas baja posible.

62 COMPUTACION CUANTICA ADIABATICA

Figura 6.5: Temperaturas de cada placa de refrigeracién de un ordenador D-Wave. Fuente: [48]

El D-Wave One esta limitado a problemas de optimizacion discreta, que son problemas de
optimizacion en los que el resultado es discreto. Para problemas continuos, hay que reformular
el problema, haciendo que sea necesario gastar cubits adicionales para representar los estados
resultado. No obstante, incluso con esta restriccion, fue un gran primer paso en el desarrollo
de los ordenadores adiabdticos, ya que con el potencial de sus 128 cibits se ha avanzado
mucho el campo. Desde entonces, D-Wave ha producido una variedad de diferentes modelos,
cada uno con mayor numero de cubits que el anterior:

Modelo Numero de ctubits | Lanzamiento comercial
D-Wave One 128 2011
D-Wave Two 512 2013
D-Wave 2X 1152 2015
D-Wave 2000Q 2048 2017
Advantage >5000 —

Tabla 6.1: Ordenadores adiabaticos D-Wave. Fuente: [49]

Aunque D-Wave One no fuese capaz de obtener mejores resultados que los ordenadores nor-
males , los ordenadores modernos de D-Wave son mucho mas rapidos para ciertos problemas
de optimizacién [50]. Con cada generacién no solo se mejora la cantidad de cubits, si no que
cada uno de los cubits se puede configurar de manera mas precisa, ofreciendo un mayor set
de problemas que el ordenador puede resolver, y haciendo que la optimizacion sea mas rapida

6.3. ORDENADORES D-WAVE 63

para otros.

6.3.1 Arquitectura D-Wave

En los ordenadores D-Wave, se usa una arquitectura basada en el enlazado de cibits. Aunque
la arquitectura especifica es diferente en cada uno de los ordenadores [51], todos tienen la
misma estructura general. Los hamiltonianos que puede producir los ordenadores D-Wave
se determinan a partir de dos factores: el peso base de cada cibit y la correlaciones entre
cada par de cuibits [52]. Dividiremos el hamiltoniano final en dos partes, una para los pesos
y otra para las correlaciones, y definiremos matematicamente cada una por separado. Si H,
es el hamiltoniano de los pesos y H. es el hamiltoniano de correlaciones, podemos definir el
hamiltoniano final producido por el ordenador con la siguiente férmula:

El peso es la parte més sencilla del hamiltoniano. Para cada estado, se multiplicara el valor
cada cubit (0 o 1) con su peso p;. Sumando todos los pesos, obtenemos el hamiltoniano de
pesos H,, siendo [1)), el valor del ctibit 7 en el estado |1)):

Hy(l0) = 3 pilv); (6.10)

El hamiltoniano de enlaces es algo mas complejo. Este hamiltoniano representa una corre-
lacién entre dos cibits. Si ambos ctbits miden lo mismo en el estado [¢), se sumard a la
energia del estado |¢) el valor de la correlacion para los dos ciibits. Matemadaticamente, si ¢;;
es el valor de correlacion para cada pareja de cibits, podemos expresar H. con esta formula:

He([0)) =D cij [); [v), (6.11)

1<j

Por lo tanto, nos queda la siguiente formula para el hamiltoniano final:

Hel) =D pil)i + D cij)i 1), (6.12)
i i<j

Este hamiltoniano tiene la limitacién de que solo afecta a estados cuanticos que no estan
en superposicion, por lo que la solucién obtenida siempre serd un estado fundamental. Esto
significa que los ordenadores de esta arquitectura producen bits como salida, y no cubits, por
lo que no se pueden utilizar como un paso intermedio de un algoritmo cuantico sin destruir la
informacién almacenada en las superposiciones. Esto limita la posibilidad de utilizar este tipo
de arquitecturas en conjunto con otras técnicas cudnticas para mejorar aun mas el rendimiento
a la hora de resolver ciertos problemas.

6.3.2 Topologia Chimera

Aunque esta arquitectura parezca bastante limitada, sigue permitiéndonos resolver practica-
mente cualquier problema de optimizacién discreta, dado un nimero suficiente de ciibits con
suficientes correlaciones entre ellos. No obstante, las arquitecturas D-Wave no estdn limita-
das solamente por el nimero de cubits del procesador, si no que también estan limitadas por

64 COMPUTACION CUANTICA ADIABATICA

las correlaciones se pueden establecer. La mayoria de cibits solo se pueden conectar con un
nimero muy reducido de cibits. Estas limitaciones fisicas se conocen como la topologia del
procesador [51].

La primera topologia desarrollada por D-Wave utilizada en sus ordenadores comerciales
es la topologia “Chimera”. Esta topologia estd basada en celdas bidimensionales de cubits.
Una celda de tamafio n tiene n ctibits horizontales y n ctibits verticales, y cuenta con n?
correlaciones internas, de manera que cada cubits horizontal estd conectado con todos los
cubits verticales y viceversa.

Visualmente, podemos representar una celda de la siguiente forma, siendo las filas ca-

da uno de los cibits verticales, las columnas los cubits horizontales y las intersecciones las
correlaciones internas de la celda:

Figura 6.6: Celda D-Wave de tamafio 4, con 8 ctibits y 16 correlaciones internas. Fuente: [51]

Las arquitecturas Chimera estan formadas por celdas de tamafio 4, posicionadas en una
cuadricula bidimensional. Ademés, para conectar las celdas de cibits entre si, también se
conectan todos los cubits que pertenecen a la misma fila o columna adjacentes, mediante
conexiones externas entre celdas. De esta manera, un procesador de 32 cubits de topologia
Chimera tendria las siguientes correlaciones:

Figura 6.7: Correlaciones internas (verde) y externas (azul) de un Chimera de 32 ctbits. Fuente: [51]

De esta forma, cada cubit tendra 4 correlaciones internas, y 1 o 2 correlaciones externas. Los
cubits que se sitdan al borde de la cuadricula de celdas tienen 1 correlacién externa, mientras
que los ctbits centrales tienen 2. En el caso ideal de que trabajasemos con un procesador de
tamafio infinito, todos los cibits tendrian 6 correlaciones. Por lo tanto, el niimero maximo de
correlaciones por cubit para este tipo de arquitecturas es 3, ya que al tener 6 correlaciones
por cubit, como cada correlacién estd en dos ciibits, tenemos 3 veces més correlaciones que

6.3. ORDENADORES D-WAVE 65

cubits.
Como hay 8 cubits en cada célula de tamano 4, para una topologia Chimera de n x m

celdas tendremos 8nm cibits. Para esa topologia, tendremos también la siguiente formula
para calcular la cantidad de correlaciones:

c=16nm +4n(m — 1) +4m(n — 1) = 4(6ab — a — b) (6.13)

El procesador de D-Wave One utilizaba una topologia Chimera, pero con una cuadricula de
4 x 4 celdas, que lo dotaba con 128 bits de potencia. Utilizando la férmula, podemos calcular
que tiene un total de 352 correlaciones en todo el procesador. Visualmente, la arquitectura
del procesador seria la siguiente:

Figura 6.8: Visualizacién del procesador D-Wave One. Fuente: elaboracién propia, basada en [51]

El resto de procesadores que utilizan la topologia Chimera son demasiado grandes para vi-
sualizarse. No obstante, podemos calcular las correlaciones y los ciibits de sus arquitecturas:

Modelo Topologia Cubits | Correlaciones | Correlaciones por cubit
D-Wave One Chimera 4 x 4 128 352 5.50
D-Wave Two Chimera 8 x 8 512 1472 5.75
D-Wave 2X Chimera 12 x 12 | 1152 3360 5.83
D-Wave 2000Q | Chimera 16 x 16 | 2048 6016 5.88

Tabla 6.2: Topologias Chimera utilizadas en los procesadores D-Wave. Fuente: elaboracién propia

Como se puede ver en la tabla, cuantos méas ciibits mayor es la cantidad de correlaciones por
cubits, ya que hay més cubits centrales con 6 correlaciones. Por mucho que aumentemos los
cubits, nunca se llegara al ideal de 6 correlaciones por cubit, ya que en algin momento el
procesador tendrd que terminar y tendremos que tener cubits con solo 5 correlaciones.

66 COMPUTACION CUANTICA ADIABATICA

6.3.3 Topologia Pegasus

Los nuevos procesadores D-Wave del modelo Advantage utilizan una topologia diferente, la
topologia Pegasus. En esta topologia los ctbits estan organizados en parejas en vez de en
celdas. Cada cubit estd conectado a 12 cibits perpendiculares, ademas de estar conectado al
otro cubit de su pareja y al siguiente y anterior ctbit paralelo.

Figura 6.9: Correlaciones de los ctbits de la topologia Pegasus. Fuente: [51]

Como se puede ver en la figura anterior, el cibit superior de la pareja 1 estda conectado a
todos los cubits de las parejas 3, 4, 5, 6, 7 y 8, a los ctubits superiores de las parejas 2y 9, y
al otro cubit de la pareja 1. Esto hace un total de 15 correlaciones.

Utilizando esta topologia, las correlaciones maximas de un cibit pasan de 6 a 15. Con esta
densidad de correlaciones, se podran resolver problemas mucho méas complejos sin necesidad
de utilizar cabits adicionales, o resolver problemas similares utilizando significativamente
menos cibits.

6.4 Aplicaciones en la inteligencia artificial

La computaciéon adiabatica, gracias a su hardware relativamente avanzado comparado con
el resto de ordenadores cuédnticos, ha sido uno de los métodos que mas se ha investigado
para la implementacién de la computacion cudntica en la inteligencia artificial. Algunos de
los algoritmos de inteligencia artificial para los que se ha conseguido utilizar la computacién
adiabatica son los siguientes:

o Clasificadores binarios [53]

6.4. APLICACIONES EN LA INTELIGENCIA ARTIFICIAL 67

o MaAquinas de vectores de soporte (support-vector machines, SVMs) [54]

o Redes neuronales embebidas en hardware [55]

La computacién adiabéatica, dado su avance tecnolégico comparado con los ordenadores cuan-
ticos basados en puertas logicas, probablemente sea una de las primeras implementaciones de
la computacién cudntica que se aplicaran a la inteligencia artificial. Aunque con ordenadores
cuanticos basados en puertas se pueden incorporar muchas mejoras adicionales, la imple-
mentacion de evolucién adiabatica en el entrenamiento de modelos de inteligencia artificial
modernos podria constituir una gran reduccién en la cantidad de tiempo y recursos necesarios
para completar el entrenamiento de dichos modelos.

7 Conclusiones

Como se ha podido ver durante el desarrollo de este trabajo, la computacién cuantica po-
dria suponer un increible beneficio para la inteligencia artificial. Ya sea mediante mejores
algoritmos o mediante técnicas que permiten disminuir drasticamente el tiempo y los recur-
sos necesarios, la computaciéon cuantica podria suponer una revoluciéon para la inteligencia
artificial.

La implementacién de muchas de las mejoras estudiadas es muy compleja. La naturaleza
de los ordenadores cuanticos requiere que, para su implementacion, aprovechemos sus pro-
piedades y ventajas especificas, que son muy diferentes de las propiedades de los ordenadores
actuales. No obstante, el posible beneficio de las mejoras estudiadas es tan grande, que un
cambio radical en la manera en la que programamos es un coste aceptable.

El mayor obstaculo actual es el tecnoldgico. Los ordenadores cudnticos actuales y su hard-
ware es muy caro de fabricar, ya que requiere de componentes muy especializados y precisos;
y también es caro de operar, ya que normalmente los ordenadores cudnticos se tienen que
mantener a temperaturas muy cercanas al cero absoluto [56]. Ademads, se requieren de equipos
especializados para su uso y mantenimiento. Todos estos factores hacen que los ordenadores
cuénticos actuales cuesten decenas de millones de ddlares para ser adquiridos, y varios mi-
llones de délares por afio para su mantenimiento y uso [57]. Esto los hace prohibitivos en la
mayoria de aplicaciones comerciales, haciendo que actualmente se suelan utilizar exclusiva-
mente para la investigacion.

No hay duda que si se consigue mitigar los costes tecnoldgicos, la computaciéon cuéntica
podria suponer un antes y un después en el entrenamiento y ejecucién de los modelos de
inteligencia artificial. Esta reduccion de costes y tiempo de entrenamiento podria suponer el
abaratamiento del desarrollo de modelos de potencia similar a los modelos actuales, y también
podria hacer viable el entrenamiento de modelos mucho méas potentes a los actuales, sin la
necesidad de incrementar exageradamente el coste y/o tiempo de entrenamiento.

7.1 Aportaciones

Las aportaciones de este TFG con las siguientes:

o Estudio de la computacién cudntica aplicada a la TA: Se han explorado diversas apli-
caciones de la computacién cudntica aplicadas a la inteligencia artificial, priorizando
aquellas con mayor beneficio potencial o con méas desarrollo previo e implementaciones
fisicas.

e Explicaciéon de la computacién cuantica y la inteligencia artificial: se ha explicado en
detalle muchos de los conceptos fundamentales de la computacién cuantica y la TA
necesarios para entender el resto del trabajo realizado.

69

70 CONCLUSIONES

o Analisis de algoritmos de multiplicacién de matrices: Se han evaluado varios algoritmos,
tanto clasicos como cuanticos, para la multiplicacién de matrices. Se ha hecho notar
que el algoritmo cudntico basado en swap tests tiene una complejidad cuadratica, lo
cual es significativamente menor que los mejores algoritmos clasicos disponibles.

e Comparacion de complejidades de algoritmos de matrices: Se ha realizado un analisis
comparativo de las complejidades de diferentes algoritmos de multiplicacién de matrices,
destacando la ventaja del algoritmo cudntico en términos de eficiencia.

e Anélisis de la biisqueda de Grover: se ha realizado una breve explicacién y un desarrollo
de la busqueda de Grover, junto con un pequefnio andlisis de los posibles beneficios
que la misma podria traer a la inteligencia artificial. También se han investigado las
posibles aplicaciones de la misma, viendo algunas implementaciones que han conseguido
aprovecharla para mejorar la eficiencia de entrenamiento y aprendizaje.

o Estudio de la computacién cudntica adiabatica: se han investigado las posibles apli-
caciones de la computaciéon adiabatica, explicando en detalle ciertos conceptos funda-
mentales necesarios para su entendimiento. Se ha destacado su particular utilidad en
problemas de optimizacion y satisfacibilidad, y se han investigado sus posibles aplicacio-
nes en la [A. También se han analizado algunos ordenadores y procesadores adiabaticos
comerciales, estudiando su arquitectura y topologia.

Estas contribuciones muestran un esfuerzo significativo por entender y mejorar la integra-
cién de la computacion cuantica con la inteligencia artificial, resaltando tanto las ventajas
potenciales como los desafios actuales

7.2 Posibles ampliaciones

Durante la realizacién de este trabajo se han analizado y estudiado ciertas aplicaciones de
la computacién cuantica aplicadas a la inteligencia artificial. Como se explico en el apartado
1.2, se han priorizado las aplicaciones mas interesantes, que podrian tener mayor beneficio o
que dispongan de mayor cantidad de estudios o de implementaciones fisicas.

A continuacién se enumeran algunas de las aplicaciones que no se han analizado, junto con
un pequeno resumen de su posible uso en la inteligencia artificial y la razén de porqué no se
han analizado:

e Convoluciones cuanticas: el uso de circuitos cuanticos para implementar convoluciones
de matrices. Su implementacién beneficiaria a las redes neuronales convolucionales, que
se utilizan para el procesamiento de imagenes, audio y video, entre otros usos. No se ha
analizado ya que seria una versién menos general y con menos beneficios que el analisis
ya realizado para los algoritmos de multiplicacion de matrices, que se aplican a todas
las redes neuronales y no solo a las convolucionales.

o Redes neuronales cudnticas (Quantum Neural Networks, QNNs): se trata de implemen-
tar redes neuronales completamente con ordenadores cuanticos, incluyendo la ejecucién
entera de la red y posiblemente el entrenamiento de la misma. Su implementacién po-
dria ahorrar un gran coste en los ordenadores cuanticos, la inicializacién de los estados,

7.2. POSIBLES AMPLIACIONES 71

ya que al procesar datos de forma completamente cuantica solo tendrian que iniciali-
zarse una vez. No se ha analizado debido a que no existen implementaciones de este
concepto que no sean con redes neuronales muy pequefias, y que aun no existen estudios
sobre si es posible implementar todas las operaciones necesarias para el funcionamiento
de una red neuronal de forma eficiente con ordenadores cuanticos.

o Codificacién en amplitudes (Amplitude encoding): consiste en realizar operaciones codi-
ficando los valores de la operacién en las amplitudes en vez de los estados. Esto, aunque
supone una mayor complejidad de calculo y mucha mas inestabilidad numérica, podria
suponer un gran ahorro de tiempo, ya que permite hacer muchisimas operaciones en
paralelo. No se ha analizado ya que, aunque en teoria se puedan realizar operaciones
con esta codificacién, solo se ha conseguido implementar en casos muy concretos, y no
estd claro aun que se pueda aplicar a la IA de forma general en entornos reales.

Bibliografia

1]

2]

Tim Davis, “Explainer: what is wave-particle duality.” https://theconversation.com/
explainer-what-is-wave-particle-duality-7414. Accedido: 30/3/2024.

Sheroy Cooper, “Quantum superposition - explained
simply and in-depth.” https://medium.com/@sheroy.cooper/
quantum-superposition-explained-simply-and-in-depth-82736420a939. Ac-

cedido: 30/3/2024.

Jesse Emspak, “What is quantum entanglement?.” https://www.space.com/
31933-quantum-entanglement-action-at-a-distance.html. Accedido: 30/3/2024.

Nanowerk, “What are quantum dots?” https://www.nanowerk.com/what_are_
quantum_dots.php. Accedido: 31/3/2024.

Wikipedia, “Qubit: Physical implementations.” https://en.wikipedia.org/wiki/
Qubit#Physical_implementations. Accedido: 29/3/2024.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits,
qutrits and ququads accurately prepared and delivered on demand.” https://arxiv.
org/abs/1203.5614. Accedido: 7/5/2024.

Brain_ Boost, “Quantum mechanics: What is bra-ket notation?.” https://medium.com/
@Brain_Boost/quantum-mechanics-what-is-bra-ket-notation-a69b505f9cc4. Ac-
cedido: 31/3/2024.

Quantiki, “Hilbert spaces.” https://www.quantiki.org/wiki/hilbert-spaces. Acce-
dido: 31/3/2024.

Scott Aaronson, “Why are amplitudes complex?.” https://scottaaronson.blog/?p=
4021. Accedido: 31/3/2024.

Kim Thibault, “FEuler’s formula: A complete guide.” https://mathvault.ca/
euler-formula/. Accedido: 31/3/2024.

Pranav Viswanath, “Quantum states and the bloch sphere” https://medium.com/
quantum-untangled/quantum-states-and-the-bloch-sphere-9f3c0c445ea3. Acce-
dido: 1/4/2024.

Wolfram Mathworld, “Spherical coordinates.” https://mathworld.wolfram.com/
SphericalCoordinates.html. Accedido: 1/4/2024.

Daniel Winton, “What are bell states?.” https://www.aliroquantum.com/blog/
what-are-bell-states. Accedido: 1/4/2024.

73

https://theconversation.com/explainer-what-is-wave-particle-duality-7414
https://theconversation.com/explainer-what-is-wave-particle-duality-7414
https://medium.com/@sheroy.cooper/quantum-superposition-explained-simply-and-in-depth-82736420a939
https://medium.com/@sheroy.cooper/quantum-superposition-explained-simply-and-in-depth-82736420a939
https://www.space.com/31933-quantum-entanglement-action-at-a-distance.html
https://www.space.com/31933-quantum-entanglement-action-at-a-distance.html
https://www.nanowerk.com/what_are_quantum_dots.php
https://www.nanowerk.com/what_are_quantum_dots.php
https://en.wikipedia.org/wiki/Qubit#Physical_implementations
https://en.wikipedia.org/wiki/Qubit#Physical_implementations
https://arxiv.org/abs/1203.5614
https://arxiv.org/abs/1203.5614
https://medium.com/@Brain_Boost/quantum-mechanics-what-is-bra-ket-notation-a69b505f9cc4
https://medium.com/@Brain_Boost/quantum-mechanics-what-is-bra-ket-notation-a69b505f9cc4
https://www.quantiki.org/wiki/hilbert-spaces
https://scottaaronson.blog/?p=4021
https://scottaaronson.blog/?p=4021
https://mathvault.ca/euler-formula/
https://mathvault.ca/euler-formula/
https://medium.com/quantum-untangled/quantum-states-and-the-bloch-sphere-9f3c0c445ea3
https://medium.com/quantum-untangled/quantum-states-and-the-bloch-sphere-9f3c0c445ea3
https://mathworld.wolfram.com/SphericalCoordinates.html
https://mathworld.wolfram.com/SphericalCoordinates.html
https://www.aliroquantum.com/blog/what-are-bell-states
https://www.aliroquantum.com/blog/what-are-bell-states

74

BIBLIOGRAFIA

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

Quantum Physics Lady, “Quantum nonlocality.” https://quantumphysicslady.org/
glossary/quantum-nonlocality/. Accedido: 1/4/2024.

Marco Taboga, “Linear independence.” https://www.statlect.com/matrix-algebra/
linear-independence. Accedido: 1/4/2024.

Wikipedia, “Quantum logic gate: Logic function synthesis.” https://en.wikipedia.
org/wiki/Quantum_logic_gate#Logic_function_synthesis. Accedido: 1/4/2024.

Wikipedia, “Deferred measurement principle” https://en.wikipedia.org/wiki/
Deferred_measurement_principle. Accedido: 1/4/2024.

IBM, “What is overfitting?.” https://www.ibm.com/topics/overfitting. Accedido:
1/4/2024.

IBM, “;que es el aprendizaje no supervisado?.” https://www.ibm.com/es-es/topics/
unsupervised-learning. Accedido: 1/4/2024.

AWS, “jqué es el aprendizaje mediante refuerzo?.” https://aws.amazon.com/es/
what-is/reinforcement-learning/. Accedido: 1/4/2024.

DataScientest, “Perceptron: jqué es y para qué sirve?.” https://datascientest.com/
es/perceptron-que-es-y-para-que-sirve. Accedido: 7/5/2024.

Joaquin Amat Rodrigo, “Algoritmo perceptrén: linealmente separable.” https:
//cienciadedatos.net/documentos/50_algoritmo_perceptron#linealmente_
separable, 2018. Accedido: 24/3/2024.

Joaquin Amat Rodrigo, “Algoritmo perceptrén: hiperplano.” https://cienciadedatos.
net/documentos/50_algoritmo_perceptron#hiperplano, 2018. Accedido: 24/3/2024.

W3 Schools, “Training a perceptron.” https://www.w3schools.com/ai/ai_training.
asp. Accedido: 23/3/2024.

Michael Nielsen, “Neural networks and deep learning: proof of the four fundamen-
tal equations.” http://neuralnetworksanddeeplearning.com/chap2.html#proof_
of _the_four_fundamental_equations_(optional), 2019. Accedido: 24-3-2024.

Michael Nielsen, “Neural networks and deep learning: the four fundemental
equations behind backpropagation.” http://neuralnetworksanddeeplearning.com/
chap2.html#the_four_fundamental_equations_behind_backpropagation, 2019. Ac-
cedido: 24/3/2024.

“Keras: optimizers.” https://keras.io/api/optimizers/rmsprop/. Accedido:
24/3/2024.
V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13,

pp. 354-356, 1969.

J. Huang, T. Smith, G. Henry, and R. van de Geijn, “Strassen’s algorithm reloaded.”
https://jianyuhuang.com/papers/scl6.pdf, 2016. Accedido: 7/5/2024.

https://quantumphysicslady.org/glossary/quantum-nonlocality/
https://quantumphysicslady.org/glossary/quantum-nonlocality/
https://www.statlect.com/matrix-algebra/linear-independence
https://www.statlect.com/matrix-algebra/linear-independence
https://en.wikipedia.org/wiki/Quantum_logic_gate#Logic_function_synthesis
https://en.wikipedia.org/wiki/Quantum_logic_gate#Logic_function_synthesis
https://en.wikipedia.org/wiki/Deferred_measurement_principle
https://en.wikipedia.org/wiki/Deferred_measurement_principle
https://www.ibm.com/topics/overfitting
https://www.ibm.com/es-es/topics/unsupervised-learning
https://www.ibm.com/es-es/topics/unsupervised-learning
https://aws.amazon.com/es/what-is/reinforcement-learning/
https://aws.amazon.com/es/what-is/reinforcement-learning/
https://datascientest.com/es/perceptron-que-es-y-para-que-sirve
https://datascientest.com/es/perceptron-que-es-y-para-que-sirve
https://cienciadedatos.net/documentos/50_algoritmo_perceptron#linealmente_separable
https://cienciadedatos.net/documentos/50_algoritmo_perceptron#linealmente_separable
https://cienciadedatos.net/documentos/50_algoritmo_perceptron#linealmente_separable
https://cienciadedatos.net/documentos/50_algoritmo_perceptron#hiperplano
https://cienciadedatos.net/documentos/50_algoritmo_perceptron#hiperplano
https://www.w3schools.com/ai/ai_training.asp
https://www.w3schools.com/ai/ai_training.asp
http://neuralnetworksanddeeplearning.com/chap2.html#proof_of_the_four_fundamental_equations_(optional)
http://neuralnetworksanddeeplearning.com/chap2.html#proof_of_the_four_fundamental_equations_(optional)
http://neuralnetworksanddeeplearning.com/chap2.html#the_four_fundamental_equations_behind_backpropagation
http://neuralnetworksanddeeplearning.com/chap2.html#the_four_fundamental_equations_behind_backpropagation
https://keras.io/api/optimizers/rmsprop/
https://jianyuhuang.com/papers/sc16.pdf

BIBLIOGRAFIA 75

[30]

[31]

32]

[41]

[42]

[43]

D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,”
Journal of Symbolic Computation, vol. 9, no. 3, pp. 251-280, 1990. Computational
algebraic complexity editorial.

V. V. Williams, Y. Xu, Z. Xu, and R. Zhou, “New bounds for matrix multiplication: from
alpha to omega.” https://arxiv.org/abs/2307.07970, 2023. Accedido: 7/5/2024.

C. Shao, “Quantum algorithms to matrix multiplication.” https://arxiv.org/abs/
1803.01601, 2018. Accedido: 7/5/2024.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, 2010.

A. Zaman, H. J. Morrell, and H. Y. Wong, “A step-by-step hhl algorithm walkthrough to
enhance understanding of critical quantum computing concepts.” https://arxiv.org/
abs/2108.09004, 2023.

Alessandro Luongo, “Quantum algorithms: Sve-based quantum al-
gorithms.” https://quantumalgorithms.org/chap-svebased.html#
spectral-norm-and-the-condition-number-estimation, 2023. Accedido:
25/3/2024.

Maxime, “What is a transformer?.” https://medium.com/inside-machine-learning/
what-is-a-transformer-d07ddifbec04, 2019. Accedido: 25/3/2024.

L. K. Grover, “A fast quantum mechanical algorithm for database search.” https://
arxiv.org/abs/quant-ph/9605043, 1996. Accedido: 4/4/2024.

C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and weaknesses
of quantum computing.” https://arxiv.org/abs/quant-ph/9701001, 1997. Accedido:
4/4/2024.

Nathan Wiebe and Ashish Kapoor and Krysta Svore, “Quantum algorithms for nearest-
neighbor methods for supervised and unsupervised learning.” https://arxiv.org/abs/
1401.2142, 2014. Accedido: 3/4/2024.

Esma Aimeur and Gilles Brassard and Sébastien Gambs, “Quantum speed-
up for wunsupervised learning” https://link.springer.com/article/10.1007/
$10994-012-5316-5, 2012. Accedido: 3/4/2024.

Y. Gao, Z. Song, X. Yang, and R. Zhang, “Fast quantum algorithm for attention compu-
tation.” https://arxiv.org/abs/2307.08045, 2023. Accedido: 3/4/2024.

G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-Delgado, and H. J. Briegel, “Quan-
tum speedup for active learning agents.” https://arxiv.org/abs/2307.08045, 2014.
Accedido: 3/4/2024.

N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum perceptron models.” https://arxiv.
org/abs/1401.4997, 2016. Accedido: 3/4/2024.

https://arxiv.org/abs/2307.07970
https://arxiv.org/abs/1803.01601
https://arxiv.org/abs/1803.01601
https://arxiv.org/abs/2108.09004
https://arxiv.org/abs/2108.09004
https://quantumalgorithms.org/chap-svebased.html#spectral-norm-and-the-condition-number-estimation
https://quantumalgorithms.org/chap-svebased.html#spectral-norm-and-the-condition-number-estimation
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9701001
https://arxiv.org/abs/1401.2142
https://arxiv.org/abs/1401.2142
https://link.springer.com/article/10.1007/s10994-012-5316-5
https://link.springer.com/article/10.1007/s10994-012-5316-5
https://arxiv.org/abs/2307.08045
https://arxiv.org/abs/2307.08045
https://arxiv.org/abs/1401.4997
https://arxiv.org/abs/1401.4997

76

BIBLIOGRAFIA

[44]

[45]
[46]

[49]

[50]

[51]

[56]

[57]

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation by adiabatic
evolution.” https://arxiv.org/abs/quant-ph/0001106, 2000. Accedido: 7/5/2024.

T. Kato, “On the adiabatic theorem of quantum mechanics,” 1950.

S. Zbinden, A. Bértschi, H. Djidjev, and S. Eidenbenz, “Embedding algorithms for quan-
tum annealers with chimera and pegasus connection topologies,” in High Performance
Computing (P. Sadayappan, B. L. Chamberlain, G. Juckeland, and H. Ltaief, eds.),
(Cham), pp. 187-206, Springer International Publishing, 2020.

N. Atlas, “Harvard researchers fold proteins with d-wave quantum computer.”
https://newatlas.com/harvard-d-wave-quantum-computer/25558/, 2012. Accedi-
do: 5/4/2024.

E. D. Dahl and V. Goliber, “Hardware and software advances in quantum an-
nealing” https://www.suny.edu/media/suny/content-assets/images/research/
events/Hardware-Software-Advances-in-Quantum-Annealing-DWaveSlides-Dahl_
Goliber.pdf, 2019. Accedido: 5/4/2024.

Wikipedia, “D-wave systems.” https://en.wikipedia.org/wiki/D-Wave_Systems.
Accedido: 12/5/2024.

J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch, “Benchmarking a
quantum annealing processor with the time-to-target metric,” 2015.

“D-wave gpu architecture: Topologies.” https://docs.dwavesys.com/docs/latest/c_
gs_4.html. Accedido: 8/3/2024.

“D-wave gpu annealing implementation and controls.” https://docs.dwavesys.com/
docs/latest/c_gpu_annealing.html. Accedido: 8/3/2024.

H. Neven, M. Drew-Brook, W. G. Macready, V. S. Denchev, J. Zhang, and G. Ro-
se, “Nips 2009 demonstration: Binary classification using hardware implementation of
quantum annealing” https://static.googleusercontent.com/media/www.google.

com/de//googleblogs/pdfs/nips_demoreport_120709_research.pdf, 2009. Accedi-
do: 5/4/2024.

Z. Li, X. Liu, N. Xu, and J. Du, “Experimental realization of a quantum support vector
machine.” https://arxiv.org/abs/1410.1054, 2015. Accedido: 5/4/2024.

M. Benedetti, J. Realpe-Gémez, R. Biswas, and A. Perdomo-Ortiz, “Quantum-assisted
learning of hardware-embedded probabilistic graphical models.” https://arxiv.org/
abs/1609.02542, 2017. Accedido: 5/4/2024.

Kiutra, “Quantum computer temperature: Do they need to be cold?.” https://kiutra.
com/quantum-computer-temperature-do-they-need-to-be-cold/, 2023. Accedido:
28/4/2024.

J. Dargan, “What is the price of a quantum computer in 20247 https://
thequantuminsider.com/2023/04/10/price-of-a-quantum-computer/, 2023. Acce-
dido: 28/4/2024.

https://arxiv.org/abs/quant-ph/0001106
https://newatlas.com/harvard-d-wave-quantum-computer/25558/
https://www.suny.edu/media/suny/content-assets/images/research/events/Hardware-Software-Advances-in-Quantum-Annealing-DWaveSlides-Dahl_Goliber.pdf
https://www.suny.edu/media/suny/content-assets/images/research/events/Hardware-Software-Advances-in-Quantum-Annealing-DWaveSlides-Dahl_Goliber.pdf
https://www.suny.edu/media/suny/content-assets/images/research/events/Hardware-Software-Advances-in-Quantum-Annealing-DWaveSlides-Dahl_Goliber.pdf
https://en.wikipedia.org/wiki/D-Wave_Systems
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://docs.dwavesys.com/docs/latest/c_qpu_annealing.html
https://docs.dwavesys.com/docs/latest/c_qpu_annealing.html
https://static.googleusercontent.com/media/www.google.com/de//googleblogs/pdfs/nips_demoreport_120709_research.pdf
https://static.googleusercontent.com/media/www.google.com/de//googleblogs/pdfs/nips_demoreport_120709_research.pdf
https://arxiv.org/abs/1410.1054
https://arxiv.org/abs/1609.02542
https://arxiv.org/abs/1609.02542
https://kiutra.com/quantum-computer-temperature-do-they-need-to-be-cold/
https://kiutra.com/quantum-computer-temperature-do-they-need-to-be-cold/
https://thequantuminsider.com/2023/04/10/price-of-a-quantum-computer/
https://thequantuminsider.com/2023/04/10/price-of-a-quantum-computer/

	Introducción
	Objetivos
	Metodología
	Estructura del trabajo

	Computación cuántica
	Fundamentos físicos de la computación cuántica
	Sistemas físicos de los ordenadores cuánticos
	Notación bra-ket
	Kets
	Bras
	Sistemas compuestos

	Bits cuánticos
	Midiendo bits cuánticos
	Fase global
	Esfera de Bloch
	Múltiples cúbits
	Entrelazamiento de cúbits

	Notación vectorial

	Puertas lógicas cuánticas
	Puertas de Pauli
	Puerta Hadamard
	Puertas de cambio de base

	Puertas de desplazamiento de fase
	Puerta SWAP
	Puertas controladas
	Puerta Toffoli
	Puerta CZ
	Puertas de desplazamiento de fase controladas
	Puerta CSWAP

	Puertas compuestas
	Puertas con exponentes
	Puertas en paralelo

	Circuitos cuánticos
	Cables cuánticos
	Puertas en circuitos cuánticos
	Puertas X, CX y Toffoli
	Puerta CZ
	Puertas SWAP y CSWAP

	Medidores

	Inteligencia artificial
	Neuronas artificiales
	Perceptrón

	Redes neuronales artificiales
	Entrenamiento
	Backpropagation
	Descenso por gradiente

	Algoritmos de multiplicación de matrices
	Algoritmos clásicos
	Algoritmo de Strassen
	Algoritmo de Coppersmith-Winograd

	Algoritmos cuánticos
	Por test de intercambio (swap test)
	Otros algoritmos

	Análisis teórico de las complejidades
	Conclusiones del análisis

	Búsqueda de Grover
	Algoritmo de Grover
	Inicialización
	Búsqueda
	Inversión sobre la media
	Iteraciones
	Algoritmo completo

	Aplicaciones en la inteligencia artificial

	Computación cuántica adiabática
	Algoritmo de evolución adiabática
	Evolución adiabática aproximada

	Problemas de satisfacibilidad
	Ordenadores D-Wave
	Arquitectura D-Wave
	Topología Chimera
	Topología Pegasus

	Aplicaciones en la inteligencia artificial

	Conclusiones
	Aportaciones
	Posibles ampliaciones

	Bibliografía

