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Resumen
Este proyecto tiene como objetivo explorar las Redes Kolmogorov-Arnold (KAN), un tipo
de red neuronal basado en el teorema de representación de Kolmogorov-Arnold, que sostiene
que cualquier función continua de varias variables puede representarse como una suma de
funciones continuas de una variable. Este enfoque teórico ofrece un marco alternativo a las
arquitecturas convencionales de redes neuronales profundas. A través de la implementación y
evaluación de redes KAN en distintas aplicaciones de ciencia de datos, se busca comparar su
rendimiento con modelos tradicionales como las redes neuronales basadas en perceptrones,
midiendo su precisión, eficiencia computacional y capacidad de generalización. Se realizarán
experimentos utilizando conjuntos de datos de tareas típicas como regresión, clasificación o
predicción en series temporales.
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1 Introducción

La inteligencia artificial es uno de los campos de la informática que más se ha desarrollado
recientemente, especialmente al tener en cuenta el crecimiento explosivo que ha tenido en los
últimos años. Hace tan solo unas pocas décadas, la inteligencia artificial era un campo muy
limitado, utilizado únicamente en ciertas aplicaciones de forma muy puntual. No obstante,
gracias al tremendo desarrollo del hardware informático que ha ocurrido desde entonces y al
consecuente progreso de las técnicas de machine learning, hoy en día la inteligencia artificial se
ha convertido en una parte fundamental de la informática. Gracias al desarrollo de modelos
avanzados de machine learning, se han conseguido grandes avances en la clasificación de
imágenes [1], el procesamiento de lenguaje natural [2] y la detección de objetos [3], junto con
una innumerable cantidad de otras tareas.

Actualmente, prácticamente todos los modelos de machine learning complejos están ba-
sados en redes neuronales artificiales. Esto es principalmente por la capacidad de las redes
neuronales artificiales de poder aproximar casi cualquier función matemática dados los sufi-
cientes parámetros, cosa que hace que se puedan aplicar en una gran variedad de problemas
y situaciones. Es gracias a esta increíble flexibilidad y adaptabilidad que las redes neuronales
artificiales se han convertido en un pilar del machine learning y de la inteligencia artifi-
cial actuales. El diseño de las redes neuronales artificiales está basado en la combinación de
transformaciones lineales con parámetros variables junto con transformaciones no-lineales fi-
jas. Repitiendo esta combinación varias veces, las redes neuronales son capaces de aproximar
de forma eficiente una gran variedad de funciones matemáticas complejas, necesitando variar
únicamente los parámetros de sus transformaciones lineales [4].

No obstante, recientemente ha surgido una alternativa a esta combinación de transforma-
ciones lineales y no-lineales: las redes Kolmogórov-Arnold, o Kolmogorov-Arnold Networks
(KAN) en inglés. Esta arquitectura novedosa, basada en el teorema de representación de
Kolmogórov-Arnold [5], establece una alternativa a la estructura tradicional de las redes neu-
ronales, y hace posible tener transformaciones no-lineales con parámetros variables. Las redes
KAN tienen el potencial de mejorar ciertos aspectos de las redes neuronales, como su inter-
pretabilidad, fiabilidad o capacidad de realizar tareas de aprendizaje continuo, además de
mejorar la precisión de los modelos en ciertas tareas [6].

Para la realización del trabajo se ha analizado la estructura y el funcionamiento de las
redes KAN, prestando especial atención al artículo científico que las propuso en 2024 [6] y
a otras publicaciones relacionadas. Se ha explicado esta novedosa arquitectura desde cero,
centrándose especialmente en como se diferencian las redes Kolmogórov-Arnold de las redes
neuronales ya establecidas. También se han explorado las diferencias que existen a la hora
de entrenar y ejecutar este tipo de arquitecturas, junto con las ventajas, desventajas y limi-
taciones respecto a las redes neuronales tradicionales. A partir de esto, se ha elaborado una
implementación desde cero en Python de este tipo de redes, con el fin de mostrar una forma
de implementar este tipo de redes y de apoyar la explicación de las mismas.
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2 Introducción

Además, se han realizado múltiples experimentos en los que se compara el rendimiento
de las redes KAN convolucionales con el de las redes CNN tradicionales, utilizando una es-
tructura convolucional KAN derivada de las capas convolucionales de las redes CNN (ver
apartado 3.2.1). Se han realizado experimentos para comparar la eficiencia de las redes res-
pecto al número de parámetros (apartado 5.3), la eficiencia respecto al número de datos de
entrenamiento (apartado 5.4), la calibración de los modelos entrenados (apartado 5.5) y la
calidad de los resultados obtenidos al realizar aprendizaje continuo por fases (apartado 5.6).
La metodología concreta de todos los experimentos se describe en sus respectivos apartados.

1.1 Objetivos
Este trabajo tiene los siguientes objetivos concretos:

• Hacer una revisión de la base teórica de las redes KAN: Explicar claramente
las redes KAN, además de todos los conocimientos necesarios de machine learning y
inteligencia artificial necesarios para comprender el funcionamiento de las redes KAN,
prestando especial atención a las diferencias principales entre las redes neuronales tra-
dicionales y las redes KAN

• Hacer una implementación propia de un modelo KAN: Realizar una implemen-
tación en Python de una arquitectura KAN básica, intentando implementar todos los
componentes esenciales desde cero, con el fin de mostrar como se podría llegar a realizar
una de estas implementaciones.

• Evaluar y comparar el rendimiento ante alternativas: Realizar experimentos
para intentar medir las propiedades de las redes KAN, comparando los resultados obte-
nidos con las redes neuronales tradicionales. Se ha decidido realizar estos experimentos
comparando las redes KAN convolucionales con las redes CNN (redes convoluciona-
les tradicionales), dada la relativa escasez de experimentos que utilizan las redes KAN
convolucionales y comparan los resultados con redes CNN.

• Hacer un análisis de ventajas y limitaciones de las redes KAN: Realizar una
análisis de las ventajas y desventajas actuales de las arquitecturas KAN, prestando
especial atención a las posibles aplicaciones de las redes KAN y a sus ventajas respecto
a las arquitecturas contemporáneas de machine learning

• Proponer líneas futuras de investigación: Proponer futuras líneas de investigación
relacionadas con las redes KAN, haciendo énfasis en las líneas de investigación más
prometedoras o que tengan mayor utilidad para el machine learning y la inteligencia
artificial

1.2 Estructura del trabajo
A continuación se describe la estructura del trabajo, junto con un breve resumen del contenido
de cada capítulo.



1.2. Estructura del trabajo 3

• Capítulo 1 - Introducción: introducción al trabajo, explicando el propósito del tra-
bajo, los objetivos concretos y la estructura del mismo

• Capítulo 2 - Inteligencia artificial: introducción de los conceptos fundamentales de
machine learning y de inteligencia artificial, donde se explican las ideas necesarias para
entender el resto del trabajo. Se presta especial atención a las técnicas y arquitecturas
mencionadas en la explicación las redes KAN o que han sido utilizadas para realizar los
experimentos.

• Capítulo 3 - Redes Kolmogórov-Arnold: explicación detallada de las redes KAN,
describiendo todo el fundamento matemático que las acompaña, haciendo énfasis en las
diferencias entre las redes KAN y las redes neuronales tradicionales

• Capítulo 4 - Implementación en Python: implementación en Python desde cero
de las redes KAN, junto con una explicación detallada del código de las funciones
principales utilizadas en la implementación

• Capítulo 5 - Experimentos: se detallan y describen los experimentos realizados para
establecer las propiedades de las redes KAN convolucionales y comparar el rendimiento
con el de las redes convolucionales ya establecidas.

• Capítulo 6 - Conclusiones: las conclusiones de todo el trabajo, incluyendo un resu-
men de los resultados obtenidos en los experimentos y las futuras líneas de investigación
propuestas





2 Inteligencia artificial

Para poder entender de forma correcta el funcionamiento de las redes KAN, primero es
necesario establecer ciertos conceptos fundamentales del campo de inteligencia artificial. En
este apartado del trabajo se ha realizado una breve introducción de muchos de estos conceptos
necesarios para entender las redes neuronales actuales, entrando específicamente en el detalle
de algunas de las técnicas y arquitecturas en las que están basadas las redes KAN, y que
serán necesarias para entender los consecuentes apartados de este trabajo.

El campo de la inteligencia artificial se dedica a la resolución de una gran cantidad de
problemas, como la clasificación de imágenes [1], el procesamiento de lenguaje natural [2] o la
detección de objetos [3], entre muchos otros. Mediante el uso de ciertos mecanismos y procesos
que se verán más adelante, es posible ajustar los parámetros de un modelo de machine learning
de tal forma que los resultados del modelo se aproximen los resultados necesarios para resolver
la tarea buscada, de forma que el modelo sea capaz de reconocer patrones tan complejos y/o
numerosos que su implementación mediante programación tradicional se vuelve inviable [4].
Este proceso de ajustar los parámetros de un modelo con el fin de que el modelo resultante
resuelva una tarea se conoce como el entrenamiento de un modelo.

En la inteligencia artificial existen muchos tipos de tareas, cada una con su conjunto de
técnicas y arquitecturas asociados. No obstante, es común clasificar las tareas de inteligencia
artificial en 3 tipos generales:

• Aprendizaje supervisado: consiste en proveer al modelo de muchos ejemplos con las
salidas esperadas para cada ejemplo. A partir de estos ejemplos, el modelo es capaz
de ir disminuyendo el error de salida y pasa, poco a poco, a ir prediciendo cada vez
mejor los resultados a partir del conjunto de datos del que se extrajeron los ejemplos.
A la que aumenta la complejidad de los patrones que se quieren aprender o la precisión
necesaria, se requieren más y más datos, cosa que aumenta también el tiempo de entre-
namiento del modelo. Además, si no se proveen de suficientes datos o los datos no son
de suficientemente buena calidad, se pueden obtener resultados subóptimos a la hora
de entrenar el modelo [7].

• Aprendizaje no supervisado: para entrenar un modelo utilizando aprendizaje no super-
visado, necesitamos proveer de ejemplos pero no necesariamente sus correspondientes
salidas. En este tipo de aprendizaje el modelo extrae patrones de los datos mediante el
análisis de patrones o de semejanzas entre los datos. Aunque construir un conjunto de
datos para este tipo de aprendizaje es más sencillo, extraer información útil no es tan
simple como para el aprendizaje supervisado, ya que muchas veces los resultados van a
ser más difíciles de interpretar y aprovechar [8].

• Aprendizaje por refuerzo: a diferencia que con los otros dos tipos de aprendizaje, el
modelo no recibe ningún conjunto de datos. Aprende mediante la interacción con el
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6 Inteligencia artificial

entorno, siendo recompensado o penalizado dependiendo de las acciones que tome y
sus consecuencias. Estos algoritmos son específicos a un problema concreto, y necesitan
una función de recompensa bien diseñada para que el modelo aprenda a interactuar
con el entorno de la forma que se espera. Mediante prueba y error el modelo poco a
poco aprende las acciones que obtienen la mayor recompensa para el entorno, y de esta
forma va optimizando sus interacciones para obtener la recompensa máxima [9].

A día de hoy, la gran mayoría de arquitecturas de inteligencia artificial están basadas en redes
neuronales [10]. Este tipo de arquitecturas están formadas por neuronas artificiales, que son
nodos en un grafo computacional que calculan un valor a partir de sus conexiones a otras
neuronas artificiales de la red. Estas redes de neuronas estaban inspiradas originalmente en
las redes neuronales biológicas encontradas en el cerebro, e imitan de forma muy simplificada
como las neuronas en el tejido cerebral están conectadas entre ellas [11].

En los siguientes apartados se procede a explicar el funcionamiento de las redes neuronales
y su entrenamiento mediante el uso del aprendizaje supervisado. Primero se abordarán ciertos
casos simples, como el funcionamiento de una única neurona artificial, y se desarrollará paso
a paso la teoría necesaria para entender como funciona una red en su totalidad. Además, se
abordarán con especial detalle los conceptos necesarios para entender las redes KAN, que se
tratarán en los apartados siguientes.

Durante todo este trabajo ha sido necesario representar una gran variedad de modelos
computacionales. Para representar estos modelos se ha utilizado un grafo que muestra el flujo
de datos del modelo, en concordancia con el formato representado en la figura 2.1.

Entradas Procesamiento Salidas

Figura 2.1: Representación de un modelo computacional como un grafo, con entradas (verde), nodos
de procesamiento (azul) y nodos de salda (rojo). Las aristas del grafo indican el flujo de
datos del modelo. Fuente: elaboración propia

2.1 Función objetivo
Antes de poder empezar a explicar el funcionamiento de las redes neuronales, es necesario
concretar exactamente el objetivo a la hora de utilizar este tipo de estructuras. De forma
muy simplificada, al entrenar un modelo mediante aprendizaje supervisado lo que se intenta
es aproximar una función objetivo f∗ : Rn → Rm, que define el comportamiento que es
deseable que el modelo muestre. Por ejemplo, una función objetivo podría ser: dados los
píxeles RGB de una imagen decir si es una imagen de un gato o de un perro. Si las imágenes
de entrada son de 25 · 25 píxeles, podríamos codificar la función como f∗ : R25·25·3 → {0, 1},
siendo una salida de 0 una imagen de un gato y una salida de 1 una imagen de un perro. Otras
funciones pueden ser mucho más complejas de modelar, hasta el punto de que en algunos casos
puede ser necesario utilizar una aproximación, ya que la función objetivo puede ser inviable
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o imposible de definir exactamente [12].
Aunque muchas funciones objetivo son fáciles de describir informalmente, producir un

algoritmo que compute estas funciones mediante programación tradicional es prácticamente
imposible. No obstante, lo que si que es viable es producir ejemplos concretos de la función. De
forma simplificada, es necesario recopilar muchas parejas de valores de entrada xi y valores de
salida yi, de forma que los valores de salida correspondan a la función objetivo (yi = f∗(xi)),
o que al menos aproximen la salida correcta (yi ≈ f∗(xi)) si no se pueden conseguir resultados
exactos. Siguiendo el ejemplo ya establecido, sería necesario conseguir muchas imágenes RGB
de 25 · 25 píxeles de gatos (en cuyo caso su yi = 0) y de perros (en cuyo caso su yi = 1).

El objetivo del aprendizaje supervisado es que, mediante el uso de todos estos ejemplos, se
obtenga un modelo que se pueda ir modificando poco a poco para que produzca resultados
que se aproximen más y más a los ejemplos del conjunto de datos. Si los datos seleccionados
son representativos y se evitan ciertos problemas que pueden ocurrir durante el entrenamiento
[7], se espera que, a partir del conjunto finito de ejemplos el modelo resultante produzca una
salida f que aproxime la función objetivo f∗ para todas las posibles entradas xi (f(x) ≈
f∗(x) ∀x ∈ Rm).

La calidad de los resultados obtenidos tras el entrenamiento puede variar tremendamente,
ya que depende de muchos factores que tienen que ser analizados en detalle. Estos factores
incluyen la cantidad y calidad de los datos utilizados, la complejidad de la función objetivo y
el diseño del modelo de machine learning entre muchos otros. Para obtener resultados buenos
se tienen que tener en cuenta muchos de estos factores y realizar pruebas frecuentes que
evalúen los resultados obtenidos. La evaluación de los modelos después del entrenamiento se
estudia en detalle en el apartado 2.5.

2.2 Neuronas artificiales
En el contexto de las redes neuronales artificiales, una neurona es un único nodo de la red,
que tiene varias entradas de datos y produce una única salida a partir de estas entradas. La
neurona calcula el valor de salida realizando una suma ponderada de las entradas, multipli-
cando cada entrada por su peso correspondiente. Además, también se añade al resultado un
valor que no se multiplica por ninguna salida, al que se le llama bias o sesgo.

El resultado de esta suma, que se conoce como la activación de la neurona, se pasa por la una
función no-lineal, con la finalidad de que las neuronas no sean transformaciones lineales de las
entradas, ya que entonces la red neuronal no sería capaz de representar funciones no-lineales.
Estas funciones no-lineales son las funciones de activación, y son una parte fundamental de
las redes neuronales artificiales [13].

Sea σ la función de activación, x las entradas, w los pesos y b el bias, podemos representar
matemáticamente el resultado de la función con la fórmula siguiente:

y = σ

(
b+

n∑
i=1

wixi

)
(2.1)

Para simplificar la ecuación anterior, normalmente se añade una “entrada” x0 cuyo valor
es siempre 1, y se utiliza w0 como el bias. Aunque el resultado es el mismo, la ecuación se
simplifica bastante, por lo que es preferible utilizar la forma simplificada:
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y = σ

(
n∑

i=0

wixi

)
(2.2)

Visualmente, podemos representar la ecuación anterior de la siguiente forma:

1

x1

x2

x3

∑
y

w0

w1

w2

w3

σ

Figura 2.2: Visualización de una neurona artificial con 3 entradas, en la que se representan las
entradas (xi), los pesos (wi), la suma ponderada y la función de activación (σ). Fuente:
elaboración propia

Esta es la fórmula más básica para las neuronas artificiales. Existen muchas otras variantes
de esta fórmula que se utilizan en ciertos contextos específicos.

2.2.1 Funciones de activación

Existen muchas funciones de activación utilizadas en modelos de redes neuronales, teniendo
cada una ciertas ventajas y desventajas que hay que tener en cuenta. La gran mayoría son
funciones no lineales, que se utilizan para hacer que la salida de la neurona deje de tener una
relación lineal con las entradas. Esto es particularmente importante al considerar como una
red neuronal encadena varias neuronas entre sí, ya que sin el uso de funciones no lineales una
red neuronal solo es capaz de producir salidas lineales a sus entradas, y por lo tanto no sería
útil a la hora de aproximar una gran cantidad de funciones objetivo [13]. A continuación se
pueden ver algunos ejemplos de funciones de activación comúnmente utilizadas:

• Lineal: σ(x) = x

• Sigmoide: σ(x) = 1/(1 + e−x)

• Tangente hiperbólica: σ(x) = tanh(x)

• ReLU: σ(x) = max(0, x)

• SiLU: σ(x) = x/(1 + e−x)

• Softplus: σ(x) = ln(1 + ex)
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1/(1 + e−x)

tanh(x)
max(0, x)
x/(1 + e−x)

ln(1 + ex)

Figura 2.3: Representación gráfica de las funciones de activación sigmoide (negro), tangente hiper-
bólica (rojo), ReLU (azul), SiLU (naranja) y softplus (rosa). Fuente: elaboración propia

2.3 Redes neuronales artificiales
Una red neuronal es un conjunto de neuronas artificiales conectadas entre sí. Las primeras
neuronas de la red, que no dependen de la salida de ninguna otra neurona, reciben directa-
mente su valor. Es mediante estas neuronas que se le pasan los datos de entrada a la red.
Estas neuronas se conocen como las neuronas de entrada de la red. De forma análoga, las
últimas neuronas de la red son las neuronas de salida. Las neuronas de salida no tienen nin-
guna neurona conectada a su salida, y su valor calculado es uno de los valores de salida de la
red.

1

x1

x2

x3

1

h1

h2

h3

h4

y1

y2

Figura 2.4: Red neuronal con 3 neuronas de entrada (verde), 4 neuronas ocultas (azul) y 2 neuronas
de salida (rojo). Fuente: elaboración propia

Por razones tanto de eficiencia como de funcionalidad, en una red neuronal las neuronas se
suelen agrupar en capas. Generalmente, todas las neuronas de una capa se comportan de la
misma forma, y se conectan con otras capas de forma similar. Además, todas las neuronas
de la misma capa suelen tener la misma función de activación y los mismos parámetros de
configuración. De esta forma, es posible diseñar grandes redes neuronales con miles o millones
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de neuronas sin tener que especificar la función de activación, las conexiones o los parámetros
de configuración de cada una de las neuronas de la red. Las capas que contienen las neuronas
de entradas son las capas de entrada, las que contienen las neuronas de salida son las capas
de salida y el resto de capas son las capas ocultas.

2.3.1 Capas densas
La capas de neuronas más básicas son las capas densas, también conocidas como Fully Con-
nected Layers, o capas completamente conectadas. En este tipo de capas cada neurona de
la capa está conectada a todas entradas recibidas por la capa. Un ejemplo visual de una de
estas capas se puede ver en la figura 2.5.

1

x1

. . .

xn

w⊺
1

. . .

w⊺
m

y1

. . .

ym

σ

σ

σ

Figura 2.5: Representación visual de una capa densa con n entradas y m salidas, siendo wi los pesos
de cada neurona y σ la función de activación de la capa. Fuente: elaboración propia

Matemáticamente, una capa densa se puede modelar a partir de la fórmula 2.2 ya introducida
anteriormente. Sean x las salidas de la capa anterior y wij el peso wi de la neurona j de la
capa, se calcula la salida y de cada neurona de la siguiente forma:

yj = σ

(∑
i

wijxi

)
(2.3)

Al tratar w y x como vectores, es posible simplificar la ecuación:

yj = σ

[w0j . . . wnj

]

1
x1
...
xn


 = σ

(
w⊺
•jx
)

(2.4)

A partir de esto, también se es posible definir el comportamiento de toda la capa densa
utilizando una sola ecuación:

y =

 y1...
ym

 = σ


w00 . . . wn0

... . . . ...
w0m . . . wnm



1
x1
...
xn


 = σ (w⊺x) (2.5)

Para que los cálculos de las ecuaciones 2.4 y 2.5 sean equivalentes a los de la ecuación 2.3
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es necesario transponer la matriz de pesos w. Además, en concordancia con la simplificación
realizada en la ecuación 2.2, x0 = 1 para todas las ecuaciones anteriores, ya que w0j es el
sesgo de cada una de las neuronas de la capa.

Una vez obtenida la fórmula para calcular la salida de una capa densa, podemos calcular
la salida de toda una red. Esto se puede hacer calculando la salida de la primera capa de la
red a partir de las entradas de la red, y luego utilizando las salidas de la primera red como
las entradas de la siguiente capa. A partir de esto, podemos ir encadenando todas las capas
de la red, hasta llegar a la salida de la última capa, que representa la salida de la red entera.

Sean w1, . . . , wl los pesos de cada capa de la red, σ1, . . . , σl las funciones de activación de
cada capa de la red, y Φi(x) = σi(w

⊺
i x), se obtiene la siguiente fórmula para calcular todos

los pesos de la red, siendo Φi la función que representa cada una de las capas de la red:

y = Φl ◦ Φl−1 ◦ · · · ◦ Φ2 ◦ Φ1 (x)

= σl(w
⊺
l . . . σ2(w

⊺
2 σ1(w

⊺
1)) . . . )

(2.6)

2.3.2 Capas convolucionales
Cuando estamos tratando con objetos que contienen una gran cantidad de información es-
tructurada, como imágenes o ficheros de audio, se puede volver muy costoso utilizar capas
densas, ya que la cantidad de pesos requeridos crece muy rápidamente con el tamaño de las
entradas. Por ejemplo, para imágenes de 100× 100 píxeles, tendríamos 10 000 neuronas para
la capa de entradas de la red. Para conectar una capa densa con esta cantidad de neuronas,
necesitaríamos una matriz de pesos de 10000×10000 elementos. Para imágenes más grandes,
este número se vuelve aún mayor.

Para intentar reducir el coste computacional y a la vez explotar la estructura de los datos
recibidos se crearon las capas convolucionales [14]. Este tipo de capas, en vez de conectar todas
las neuronas entre sí, hacen que solo puedan afectar a una salida las entradas “cercanas” a
esta salida. Esto es análogo a como se calculan las convoluciones matemáticas discretas [15].

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

x

∗
1 0 1
0 1 0
1 0 1

w

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

x ∗ w

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figura 2.6: Representación gráfica de una convolución discreta 2D, cuyos operandos y resultado son
matrices bidimensionales. Fuente: [16]

Las entradas de las capas convolucionales tienen cierta forma, la cual depende de la estructura
de los datos de entrada:

• Datos 1D (ficheros de audio, series temporales, etc.): hay n posiciones de entrada,
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teniendo cada una s datos, por lo que recibimos una entrada de Rn×s.

• Datos 2D (imágenes): hay n×m posiciones de entrada, teniendo cada una s datos, por
lo que tenemos una entrada de Rn×m×s.

• Datos 3D o superiores (videos, nubes de puntos 3D, etc.): hay n1× · · · × nm posiciones
de entrada, teniendo cada una s datos, por lo que tenemos una entrada de Rn1×···×nm×s.

Las capas convolucionales tienen kernels, que son estructuras matriciales que contienen to-
dos los pesos entrenables de la capa. Cada uno de estos kernels tiene el mismo número de
dimensiones que los datos de entrada, aunque su tamaño en cada una de estas dimensiones
depende del tamaño de kernel elegido. Si tenemos una entrada de datos de forma n×m× s y
un tamaño de kernel de p× q, entonces cada kernel tendrá una forma de p× q× s. El tamaño
de kernel normalmente es un número bastante pequeño comparado con las dimensiones de
entrada, siendo el valor más común 3× 3. Podemos ver un ejemplo de un kernel 3× 3× 1 en
la figura 2.6, que es equivalente a realizar una convolución discreta 2D con un operando de
tamaño 3× 3.

Las capas convolucionales también hacen uso de funciones de activación, con el fin de que
el resultado producido por la capa no sea una combinación lineal de sus salidas. Si no se
utilizasen funciones de activación, al igual que para las capas densas, esto impediría que la
red sea capaz de representar funciones no-lineales y por lo la red no sería capaz de aprender
correctamente la gran mayoría de funciones objetivo [13].

Una vez establecida la forma de los kernels se pueden definir matemáticamente las salidas
producidas por una capa convolucional. Sea x ∈ Rn×m×s la entrada, wk ∈ Rp×q×s los kernels
de la capa, a∗b la convolución discreta de a y b, y σ la función de activación, podemos definir
las salidas de una capa convolucional de la siguiente forma:

yi,j,k = σ
(
(x ∗ wk)i,j

)
= σ

∑
a,b,c

xi+a,j+b,c w
k
a,b,c

 (2.7)

Las redes convolucionales también hacen uso de capas de pooling, que las hacen más re-
sistentes al ruido a la vez de que reducen el tamaño de la red sin afectar demasiado a la
generalización de la misma. Estas capas, normalmente introducidas después de las capas con-
volucionales, generan valores dividiendo los datos en regiones y calculando un único valor
para cada región. Lo más frecuente es, para cada región 2× 2 quedarse con el valor máximo
(conocido como Max Pooling) o el valor medio (Average Pooling) [17]. En la figura 2.7 se
puede ver un ejemplo de Max Pooling.

Figura 2.7: Visualización de una operación de Max Pooling bidimensional, con regiones de tamaño
2× 2. Fuente: [18]
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2.4 Entrenamiento
Hemos visto como calcular los valores de salida de una red neuronal. No obstante, para
que la red sea capaz de resolver problemas computacionales vamos a tener que entrenarla. El
entrenamiento de una red es el proceso de actualizar los parámetros entrenables, de forma que
el resultado que produce la red se ajuste al resultado deseado. Estos parámetros normalmente
son las matrices de pesos de las capas (wi), aunque dependiendo de la arquitectura de la red
y de las capas usadas pueden existir mas parámetros modificables durante el entrenamiento.

Para poder entrenar una red, primero es necesario cuantificar el error que ha cometido.
El error E es simplemente lo lejos que está cada salida producida por la red de la salida
esperada para ciertos datos de entrada. Para definir matemáticamente el error, tenemos que
seleccionar la función de pérdida. Hay muchas funciones de pérdida, siendo una de las más
simples la diferencia cuadrada entre la salida obtenida y la salida esperada:

Ei = (yi − ŷi)
2 (2.8)

La función de pérdida define exactamente como estamos midiendo el error entre la salida
producida (y) y la salida esperada (ŷ). Existen muchas otras funciones de pérdida [19], cada
una con sus usos, ventajas y desventajas.

2.4.1 Retropropagación
Para actualizar los pesos de una red neuronal, es necesario calcular la derivada respecto al
error para cada parámetro entrenable de la red. Una vez obtenida esta derivada, podemos
ajustar cada uno de los parámetros utilizando la derivada obtenida de forma que el error de la
red se disminuya tras la actualización. Para calcular estas derivadas, normalmente se utiliza
retropropagación (backpropagation en inglés), que es un algoritmo que permite propagar el
error desde las capas de salida hasta las capas de entrada para poder calcular las derivadas
de forma eficiente [20].

La siguiente sección explica el algoritmo de backpropagation. Para poder describirlo de
forma precisa, va a ser necesario primero definir la notación que se ha utilizado. Se utilizarán
las siguientes variables durante la explicación del algoritmo:

• xli: valores de entrada de la capa l.

• wl
i,j : pesos de la capa l.

• zl: notación para
(
wl
)⊺

xl. Esto implica que zli = (wl
•,i)

⊺x = wl
i,•x.

• σl: función de activación de la capa l.

• al: valores de salida de la capa l. al = σl(z
l)

• y: salida de la red. y = aL, siendo L la cantidad de capas de la red y, por lo tanto, el
índice de la última capa.

• ŷ: salida esperada de la red.

• E: error de la red
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• E′ derivada del error de la red respecto a y, E′ = ∂E/∂y

La derivada que buscamos obtener para actualizar los pesos de la red es ∂E/∂wl
i,j para todos

los pesos de todas las capas de la red. Para poder calcular esta derivada de forma eficiente
para todas las capas definiremos un valor intermedio, llamado delta (δ). Los deltas de una
capa son la derivada del error respecto a zl (δli = ∂E/∂zli). A partir de estos valores, es muy
simple calcular la derivada de los pesos ∂E/∂wl

i,j :

∂E

∂wl
i,j

=
∂E

∂zli

∂zli
∂wl

i,j

= δlix
l
j (2.9)

Entonces, para calcular ∂E/∂wl
i,j únicamente necesitamos calcular δli para todas las capas

de la red. Podemos calcular el delta de la última capa de la red (δLi ) a partir de E de forma
directa:

δLi =
∂Ei

∂zLi
=

∂Ei

∂aLi

∂aLi
∂zLi

=
∂Ei

∂yi

∂σL(z
L
i )

∂zLi
= E′

i · σ′
L(z

L
i ) (2.10)

Los deltas del resto de capas de la red se pueden calcular a partir de los deltas de la capa
siguiente de la red. Para obtener la fórmula, primero vamos a aplicar la definición de δli para
ponerlo en términos de δl+1:

δli =
∂E

∂zli
=
∑
j

(
∂E

∂zl+1
j

∂zl+1

∂zli

)
=
∑
j

(
δl+1
j

∂zl+1
j

∂zli

)
(2.11)

Simplificamos ∂zl+1
j /∂zli:

∂zl+1
j

∂zli
=

∂wl+1
j,• xl+1

∂zli
=

∂wl+1
j,• σl(z

l)

∂zli
= wl+1

j,i σ′
l(z

l
i) (2.12)

Combinando las ecuaciones 2.11 y 2.12, obtenemos la siguiente fórmula para calcular δl a
partir de δl+1:

δli =
∑
j

(
δl+1
j wl+1

j,i σ′
l(z

l
i)
)
= δl+1wl+1

•,i · σ
′
l(z

l
i) = (wl+1

i,• )⊺ δl+1 · σ′
l(z

l
i) (2.13)

A partir de las ecuaciones 2.10 y 2.13, podemos calcular δ1, . . . , δL calculando δL con la
ecuación 2.10 y aplicando la ecuación 2.13 para obtener el resto de valores. A partir de esto,
es posible calcular las derivadas de todos los pesos utilizando la ecuación 2.9.

2.4.2 Descenso por gradiente
Una vez tenemos las derivadas de todos los pesos de la red, podemos ajustarlos según las
derivadas mediante el uso de un optimizador. Un optimizador es el algoritmo que controla
como cambiamos los pesos de la red para minimizar el error de forma eficiente. Uno de los
optimizadores más sencillos es descenso por gradiente, que consiste en restar a los pesos una
fracción de su derivada. La fracción que restamos la controlamos con la learning rate, que
es un parámetro ajustable. Una learning rate demasiado baja significa que la red neuronal
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tardará más de lo necesario en entrenarse, mientras que una learning rate demasiado alta
puede causar problemas de estabilidad y hacer que el modelo no se entrene bien. Sea µ la
learning rate y ∂E/∂wl

ij la derivada de wl
i,j respecto al error de la red, tenemos la siguiente

fórmula para actualizar los pesos de la red:

wl
i,j ← wl

i,j − µ
∂E

∂wl
i,j

(2.14)

Aunque este optimizador tan simple es capaz de minimizar muchas funciones, existen muchos
otros optimizadores que, aunque sean más complejos, consiguen minimizar el error de forma
mucho más rápida [21].

2.5 Evaluación de modelos

Una vez se ha realizado el entrenamiento de un modelo, es de vital importancia tener la
capacidad de medir lo acertados que son los resultados producidos por el modelo a la ho-
ra de realizar la tarea para la que ha sido entrenado. En este apartado se explican varias
técnicas y conceptos relevantes a la hora de evaluar el rendimiento de modelos de machine
learning, que serán utilizados cuando se analicen e interpreten los resultados obtenidos en
los experimentos realizados (ver capítulo 5). Este apartado se centra únicamente en explicar
técnicas y conceptos relevantes para medir el rendimiento de modelos entrenados en tareas
de clasificación, ya que los experimentos se han realizado utilizando modelos entrenados para
este tipo de tareas.

2.5.1 División de datos

A la hora de entrenar y evaluar modelos de inteligencia artificial, en la gran mayoría de casos
es imposible proporcionar al modelo todos los posibles casos de entrada y salida que tiene
que aprender. En vez de eso, se intenta que el modelo generalice estos casos a partir de un
conjunto limitado de datos de entrenamiento. Por lo tanto, a la hora de evaluar un modelo
generalmente lo que queremos medir es su capacidad de generalizar los patrones aprendidos
en el entrenamiento al encontrarse con datos nuevos, no lo bien que predice los datos ya
aprendidos.

Es por esto que, a la hora de medir el rendimiento de los modelos se suelen dividir los
datos en dos conjuntos: uno de entrenamiento y otro de evaluación. Los datos del conjunto
de entrenamiento únicamente se utilizan para entrenar el modelo, mientras que los datos de
evaluación solo se utilizan para medir el rendimiento del modelo. De esta forma, el rendimiento
obtenido a la hora de evaluar el modelo reflejará mucho mejor la capacidad de generalización
del modelo [22].

Para asegurar que la división de datos es efectiva, hay que asegurarse que no hay muestras
repetidas en el conjunto de datos de entrenamiento y evaluación. En caso de que existan
algunas muestras que estén en ambos conjuntos, los resultados obtenidos no serán del todo
representativos de la capacidad de generalización del modelo, ya que para esos datos el modelo
ya ha tenido una oportunidad de aprender el valor correcto durante el entrenamiento [23].
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2.5.2 Logits

En tareas de clasificación los modelos se entrenan para, dado un conjunto de entradas, pre-
decir a cuál de las posibles clases de salida pertenece. No obstante, en la gran mayoría de
arquitecturas, el modelo no produce una única salida que nos dice cuál clase ha predecido, si
no que produce un valor para cada clase posible. Estos valores se conocen como los logits del
modelo.

Los logits producidos por un modelo pueden ser cualquier número real. Es por esto que,
generalmente, los logits se normalizan antes de ser utilizados. Aunque existen varios métodos,
uno de los más comunes es la normalización softmax [24], que emplea la función exponencial
para normalizar los logits de forma que todos los logits normalizados estén entre 0 y 1, y la
suma de todos los logits normalizados sea 1. La salida función softmax σ : Rn 7→ [0, 1]n se
puede definir de la siguiente forma:

σ(l)i =
eli∑
j e

lj
(2.15)

Una vez tenemos los logits normalizados, podemos saber cuál es la clase predecida por el
modelo cogiendo la clase cuyo logit sea mayor:

y = argmax
i

σ(li) = argmax
i

li (2.16)

También es relevante la confianza que tiene el modelo, que es el valor del logit normalizado
de la clase predecida:

c = max
i

σ(li) (2.17)

Los resultados con menor confianza producidos por un modelo deberían tratarse con cuidado,
ya que generalmente estos resultados serán menos fiables que los resultados con mayor con-
fianza. No obstante, aunque una menor confianza generalmente indica un resultado menos
fiable y viceversa, no se debería interpretar la confianza directamente como la probabilidad
de que la salida predecida por un modelo sea correcta, ya que estos dos valores pueden di-
ferir significativamente [25]. La diferencia entre la confianza y la probabilidad de que una
predicción sea correcta se explora más adelante en el apartado 2.5.5.

2.5.3 Métricas de rendimiento

Una de las principales características que queremos medir a la hora de evaluar un modelo
es el rendimiento, es decir, lo bien que realiza la tarea para la que ha sido entrenado. Para
medir el rendimiento de modelos de clasificación existen muchas métricas, cada una con sus
ventajas y desventajas [26].

2.5.3.1 Tasa de aciertos

A la hora de entrenar modelos de clasificación, una de las métricas mas simples e intuitivas
es la tasa de aciertos, que es la cantidad de aciertos obtenidos por el modelo dividido entre la
cantidad de datos totales en el conjunto de evaluación. Para obtener esta métrica, simplemente
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tenemos que comparar la cantidad de veces que el modelo ha acertado la clase entre la cantidad
de muestras totales de evaluación. Sean y las clases predecidas por el modelo e ŷ las clases
esperadas del conjunto de evaluación, tenemos la siguiente definición:

tasa de aciertos = aciertos
total =

|i : yi = ŷi|
|ŷi|

(2.18)

La tasa de aciertos, aunque es una métrica muy intuitiva y simple, en mucho casos puede
no ser ideal para medir el rendimiento de los modelos, especialmente cuando las clases del
conjunto de evaluación tengan un número de muestras muy desequilibrado [27].

2.5.3.2 Precisión, exhaustividad y f-score

Para calcular muchas de las métricas de rendimiento de modelos de clasificación, es necesario
calcular el número de muestras verdaderas positivas (VP), verdaderas negativas (VN), falsas
positivas (FP) y falsas negativas (FN) de cada clase [26]. Podemos ver en la tabla 2.1 como
a partir de la predicción y del modelo y el valor real de la muestra ŷ podemos definir a cuál
de las cuatro clasificaciones (VP, VN, FP, FN) pertenece cada muestra.

Valor verdadero
Predicción

Positivo (y = k) Negativo (y 6= k)
Positivo (ŷ = k) Verdaderos positivos (VP) Falsos negativos (FN)
Negativo (ŷ 6= k) Falsos positivos (FP) Verdaderos negativos (VN)

Tabla 2.1: Relación entre la predicción y y el valor verdadero ŷ respecto a una clase k. Muestra
como se definen los verdaderos positivos, verdaderos negativos, falsos positivos y falsos
negativos para la clase k a partir de la predicción y el valor verdadero. Fuente: elaboración
propia

Matemáticamente, podemos calcular la cantidad de verdaderos positivos, verdaderos negati-
vos, falsos positivos y falsos negativos de una clase k de la siguiente forma:

VPk = |i : yi = k ∧ ŷi = k|
VNk = |i : yi 6= k ∧ ŷi 6= k|
FPk = |i : yi = k ∧ ŷi 6= k|
FNk = |i : yi 6= k ∧ ŷi = k|

(2.19)

A partir de estos valores, podemos calcular la precisión y la exhaustividad de cada clase, dos
métricas que se utilizan frecuentemente para medir el rendimiento de los modelos:

• La precisión mide la fracción de valores predecidos como positivos que son realmente
positivos. Se define como la tasa de verdaderos positivos frente al total de valores
predecidos como positivos, VP/(VP + FP).

• La exhaustividad la fracción de valores realmente positivos que son predecidos como
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positivos. Se define como la tasa de verdaderos positivos frente al total de valores
realmente positivos, VP/(VP + FN).

Estas dos métricas, aunque en ciertos casos se suelen utilizar de forma directa, normalmente
se combinan para formar el Valor-F, o f-score, que se define como la media armónica de la
precisión y la exhaustividad. Al igual que para la precisión y la exhaustividad, esta métrica
se calcula para cada clase. Podemos definir la f-score para una clase k de la siguiente forma:

F1,k = 2
precisionk · exhaustividadk

precisionk + exhaustividadk
=

2VPk

2VPk + FPk + FNk
(2.20)

También es posible ponderar la media armónica utilizando un parámetro β > 0, como se
puede ver ecuación 2.21. Este parámetro indica la cantidad de veces que es más importante la
exhaustividad que la precisión. Para β > 1 se le otorga mayor ponderación a la exhaustividad,
mientras que para β < 1 se le da mayor ponderación a la precisión.

Fβ,k = (1 + β2)
precisionk · exhaustividadk

β2 · precisionk + exhaustividadk
=

(1 + β2)VPk

(1 + β2)VPk + β2FPk + FNk
(2.21)

La f-score es una métrica mucho más útil que la tasa de aciertos cuando el conjunto de
datos presenta un número de muestras desequilibrado entre clases. Es por esto que, aunque
es una métrica más compleja y más difícil de interpretar, normalmente es preferible medir el
rendimiento de los modelos en términos de f-score [27].

2.5.4 Métricas de eficiencia
Aunque en un mundo ideal las métricas de rendimiento serían las únicas métricas necesarias
para evaluar que modelos son mejores, a la hora de medir el rendimiento de modelos en
el mundo real también nos importa minimizar los costes asociados con entrenar y utilizar
estos modelos. Para tener los costes en cuenta, existen las métricas de eficiencia, que intentan
cuantificar alguno de los costes del modelo y tenerlo en cuenta junto con el rendimiento.

Dado el coste al que puede llegar el entrenamiento y uso de modelos de inteligencia artificial,
las métricas de eficiencia pueden ser incluso más importantes que las métricas de rendimiento,
especialmente a la hora de comparar arquitecturas con costes muy diferentes.

2.5.4.1 Eficiencia respecto al número de parámetros

A la hora de entrenar modelos de inteligencia artificial, generalmente los modelos con mayor
cantidad de parámetros obtienen mejores resultados que los modelos con menor cantidad,
especialmente a la hora de realizar tareas complejas [28]. No obstante, el coste y el tiempo de
entrenamiento de un modelo aumenta rápidamente con la cantidad de parámetros del mismo,
hasta el punto que entrenar un modelo con una gran cantidad de parámetros puede llegar
ser prohibitivamente caro y/o lento. Es por esto que es de vital importancia que los modelos
utilicen de forma eficiente los parámetros, de forma que maximicen el rendimiento dada una
cantidad fija de parámetros.

Para realizar un análisis de eficiencia respecto al número de parámetros hay que tener en
cuenta el rendimiento obtenido por los modelos para cierta cantidad de parámetros. Para
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esto, generalmente va a ser necesario definir una seria de modelos con un rango amplio de
parámetros, y medir el rendimiento obtenido con cada uno de los modelos. Aunque esto sea
relativamente fácil de realizar, interpretar los resultados obtenidos puede ser más complejo,
ya que es posible que ciertas arquitecturas de modelos no sean siempre mejores que otras,
y que estas solo obtengan un mejor rendimiento para cierto rango de parámetros. Además,
dependiendo de las circunstancias exactas y del uso planificado del modelo, es posible que se
prefiera un modelo peor pero menos costoso o viceversa.

En el apartado 5.3 se ha realizado un experimento que intenta medir la eficiencia respecto
al número de parámetros de las redes KAN frente a la de las redes tradicionales.

2.5.4.2 Eficiencia respecto al número de datos de entrenamiento

Otro aspecto a tener en cuenta a la hora de entrenar modelos es la cantidad de datos de
entrenamiento requeridos para obtener un buen rendimiento. Como regla general, a mayor
complejidad de la tarea que queremos resolver, mayor es la cantidad de datos necesarios
para entrenar un modelo con buen rendimiento [29]. No obstante, elaborar conjunto de datos
grandes puede ser increíblemente costoso. Además, una vez obtenido el conjunto, se requiere
de mayor tiempo de entrenamiento para entrenar con un conjunto de datos más grande,
cosa que aumenta el coste de entrenamiento. Es por esto que, a la hora de entrenar modelos
de inteligencia artificial, es preferible utilizar arquitecturas y modelos que necesiten de una
menor cantidad de datos de entrenamiento para obtener buenos resultados [30].

Para realizar un análisis de eficiencia respecto al número de datos de entrenamiento hay
que tener en cuenta el rendimiento obtenido para cierta cantidad de datos de entrenamiento.
Esto generalmente se hace entrenando el mismo modelo con varias fracciones de un conjunto
de datos predefinido, y midiendo el rendimiento obtenido al entrenar con cada una de las
fracciones del conjunto de datos de entrenamiento. Al igual que para la eficiencia respecto al
número de parámetros, dependiendo del caso de uso del modelo es posible que sea preferible
utilizar un modelo con menor rendimiento que requiera una menor cantidad de datos o
viceversa.

En el apartado 5.4 se ha realizado un experimento que intenta medir la eficiencia respecto
al número de datos de entrenamiento de las redes KAN frente a la de las redes tradicionales.

2.5.4.3 Eficiencia respecto al tiempo de entrenamiento

Otro de los costes de entrenar modelos de inteligencia artificial es el tiempo que tarda el
modelo en ser entrenado. Al igual que con los otros tipos de costes, es preferible que el
tiempo necesario para entrenar el modelo sea lo menor posible, con el fin de minimizar el
coste necesario para entrenar el modelo [31].

Aunque el tiempo de entrenamiento sea una medida más directa del coste necesario para
entrenar modelos, en muchos casos es preferible medir la eficiencia en términos de otros
costes, ya que el tiempo de entrenamiento puede variar dependiendo del hardware utilizado
para el entrenamiento. Es por esto que es muy complicado comparar resultados de distintos
experimentos si estos han utilizado sistemas diferentes [32]. No solo eso, si no que en muchos
casos ocurre que ciertos modelos van mejor en algunos sistemas que en otros, cosa que hace
que los resultados puedan no ser tan informativos como se esperaba, incluso cuando se está
entrenando en exactamente el mismo sistema. Además de todo esto, también hay que tener
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en cuenta el entorno de entrenamiento, ya que si el equipo en el que se está entrenando el
modelo está siendo utilizado para otros programas o tareas es posible que los tiempos varíen
por eso.

2.5.5 Calibración

Como ya se ha visto en el apartado 2.5.2, además de la clase predecida podemos obtener la
confianza que tiene el modelo en que la respuesta correcta es esa clase. Utilizando ese número,
es posible (en teoría) distinguir los casos en los que el modelo está seguro que la salida es
de la clase predecida, de los casos en los que el modelo no tenga tanta certeza. No obstante,
aunque la confianza es un valor entre 0 y 1, no podemos necesariamente interpretarlo como la
probabilidad de que la clase sea correcta. Que el modelo tenga confianza del 95% no significa
que la respuesta que ha dado sea la correcta en un 95% de los casos [33].

Para medir el grado de discrepancia entre la confianza del modelo y la probabilidad de que
la muestra predecida sea correcta, tenemos que estudiar la calibración del modelo. Modelos
bien calibrados tendrán valores parecidos para la confianza y la probabilidad de que la muestra
sea correcta, mientras que modelos mal calibrados no [34]. Existen varias formas de medir la
calibración de los modelos. En los siguientes apartados, explicamos dos de las más comunes.
En el apartado 5.5 se ha realizado un análisis de la calibración de varios modelos, utilizando
estas dos métricas que veremos a continuación.

2.5.5.1 Rendimiento por intervalo de confianza

Una manera visual de medir la calibración de un modelo es utilizando Calibration Plots. Estos
gráficos se basan en agrupar las muestras de evaluación en función de la confianza predecida
por el modelo y medir la calibración de cada uno de los grupos [35]. Existen varias estrategias
para dividir las muestras en base a la confianza, aunque la más común es hacer una división
uniforme respecto a la confianza de las muestras, en la que cada grupo de muestras representa
una fracción uniforme del intervalo [0, 1]. Por ejemplo, para N = 5 grupos, tendríamos en un
grupo todas las muestras con confianza c ∈ [0, 0.2), en otro todas las muestras con confianza
c ∈ [0.2, 0.4), etc. La fórmula general para encontrar el grupo G de una muestra con confianza
c en una división uniforme en N grupos es

G(x) = bc(x) ·Nc, (2.22)

de forma que las muestras están divididas en los grupos G0, . . . , GN−1. Una vez agrupadas
todas las muestras, se calcula para cada grupo la confianza media y la tasa de aciertos media.
Si el modelo está bien calibrado estos dos valores serán cercanos, y viceversa [34]. También se
suele calcular la cantidad de muestras en cada grupo, ya que un grupo con menor cantidad de
muestras es menos relevante que un grupo con mayor cantidad. Podemos definir la confianza
media conf(Gi) y la tasa de aciertos media acc(Gi) de un grupo de muestras Gi de la siguiente
forma:
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conf(Gi) =
1

|Gi|
∑
x∈Gi

c(x)

acc(Gi) =
|x ∈ Gi : yx = ŷx|

|Gi|

(2.23)

Los valores de confianza y tasa de aciertos media para cada grupo se suelen representar en un
gráfico de líneas, que muestra la confianza media de cada grupo respecto a la tasa de aciertos
media. Estos gráficos se conocen como curvas de probabilidad de calibración o Probability
Calibration Curves, y se utilizan para medir de forma visual la calibración de un modelo de
inteligencia artificial.

2.5.5.2 Error de calibración esperado

Aunque la técnica descrita anteriormente se puede utilizar para discernir visualmente la cali-
bración de un modelo, no es fácil de utilizar para comparar la calibración de varios modelos.
Como tenemos 3 cantidades para cada grupo de muestras (confianza media, tasa de acier-
tos media y cantidad de muestras), realizar un análisis utilizando estos números puede ser
complejo. No obstante, existe otra métrica que combina toda esta información con el fin de
proporcionar un único valor con el que podemos medir la calibración del modelo. Esta métri-
ca, conocida como el error de calibración esperado (ECE) o Expected Calibration Error, mide
la diferencia esperada entre la confianza y la tasa de aciertos de cada grupo de muestras Gi,
ponderándolo respecto al número de muestras de cada grupo [34]. Se define con la siguiente
fórmula, siendo n la cantidad total de muestras, Gi el grupo i-ésimo de muestras, conf() la
confianza media y acc() la tasa de aciertos media:

ECE =
1

n

∑
i

|Gi| · |acc(Gi)− conf(Gi)| (2.24)

Como el ECE mide el error de calibración, un menor ECE significa una mejor calibración de
un modelo, y viceversa. Aunque el ECE es una métrica mucho más simple para comparar la
calibración de los modelos, no nos dice nada de como se varía la confianza y la tasa de errores
en toda la distribución de muestras. Es por esto que, aunque en los análisis de calibración el
ECE sea la métrica principal, las curvas de calibración se siguen utilizando para poder ver
más detalladamente como se comporta un modelo [33].

2.5.6 Aprendizaje continuo y el olvido catastrófico
El aprendizaje continuo es la capacidad de aprender dada nueva información sin olvidar la
información ya aprendida. Esta es una habilidad fundamental para cualquier sistema que
opere en un entorno con información dinámica. No obstante, las redes neuronales artificiales
y la gran mayoría de modelos de inteligencia artificial actuales no tienen esta capacidad [36].
Es más, al entrenar estos modelos con información nueva, estos suelen casi inmediatamente
reemplazar los patrones aprendidos al entrenar con la información anterior por la información
nueva, “olvidando” toda la información aprendida previamente. Este fenómeno se conoce
como el olvido catastrófico [37].
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Como consecuencia de este comportamiento, los modelos actuales de inteligencia artificial
se tienen que entrenar con toda la información necesaria de golpe, sin poder realizar un en-
trenamiento incremental. Este problema hace que modificar modelos grandes de inteligencia
artificial es muy costoso, incluso si es solo para introducir una pequeña cantidad de infor-
mación nueva, ya que es necesario entrenar el modelo también con toda la información ya
aprendida, en vez de únicamente con la nueva información.

Para medir la capacidad que tiene un modelo para realizar aprendizaje continuo, especial-
mente en tareas de clasificación, se suele utilizar un entrenamiento por fases. En cada una de
las fases se entrena el modelo con un subconjunto de las clases del conjunto de entrenamiento.
Después de cada fase, se mide el rendimiento del modelo no solo en las clases entrenadas en
esa fase, si no también en las clases entrenadas en fases anteriores. De esta forma, podemos
medir la retención de información anterior del modelo, y a partir de ahí medir como de bueno
es el modelo a la hora de mantener la información anterior integrando la información nueva
[38]. Podemos ver un análisis que intenta medir la capacidad de varios modelos para realizar
tareas de aprendizaje continuo en la sección 5.6, donde se realiza un entrenamiento por fases
similar al que se ha descrito.



3 Redes Kolmogórov-Arnold

Las redes Kolmogórov-Arnold, o KAN (Kolmogórov-Arnold Networks), son una nueva alter-
nativa a las redes neuronales tradicionales. Este tipo de red, como se estudia en los apartados
siguientes, están basadas en una estructura y unos principios radicalmente diferentes que los
encontrados en las redes tradicionales actuales.

En las redes tradicionales, que a partir de ahora llamaremos redes MLP (Multi-Layer Per-
ceptron), cada una de las capas lineales seguidas por funciones de activación no lineales. Las
capas lineales de la red contienen pesos entrenables, mientras que las funciones de activación
no lineales son fijas (no entrenables). A partir de esta combinación de elementos (transfor-
maciones lineales entrenables y funciones no-lineales fijas), una red tradicional es capaz de
aproximar casi cualquier función matemática [10].

Las redes KAN, no obstante, difieren significativamente de este planteamiento. En vez
de combinar capas lineales entrenables y funciones de activación no entrenables, las redes
Kolmogorov-Arnold permiten el entrenamiento directo de transformaciones no lineales entre-
nables. Gracias a esta combinación de las propiedades de las capas lineales y de las funciones
de activación en uno, las redes KAN no necesitan utilizar funciones de activación ni muchos
de los otros mecanismos típicos de las redes neuronales tradicionales, ya que son capaces de
representar cualquier función matemática únicamente utilizando capas KAN.

Red MLP Red KAN
y = (σn ◦Wn ◦ · · · ◦ σ2 ◦W2 ◦ σ1 ◦W1) (x) y = (Φn ◦ · · · ◦ Φ2 ◦ Φ1) (x)

x1 xw⊺
1 y1

. . . . . . . . .

xn xw⊺
m ym

σ

σ

σ

x1 φ1,•(x1) y1

. . . . . . . . .

xn φn,•(xn) ym

Tabla 3.1: Comparación de la estructura de las redes MLP con las redes KAN, mostrando las fun-
ciones no-lineales en azul, los parámetros entrenables lineales en rojo, y los parámetros
entrenables no-lineales en morado. Fuente: elaboración propia

A diferencia de las redes tradicionales, que están basadas en el teorema de aproximación
universal [4], la teoría matemática detrás de las redes KAN está basada en el teorema de
representación de Kolmogórov-Arnold [5]. Es a partir de la generalización de este teorema
que se obtienen las fórmulas que definen la estructura interna de las redes KAN.

Como se estudia más adelante, es posible utilizar muchas estructuras matemáticas para

23
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implementar el componente principal de la estructura interna de las redes KAN. Cada una
de estas estructuras tiene sus ventajas y desventajas, por lo que puede resultar complejo elegir
la estructura óptima a la hora de diseñar un modelo que utilice redes Kolmogórov-Arnold.

3.1 Teorema de representación
Las redes KAN están basadas en el teorema de representación de Kolmogórov-Arnold [5]. Este
teorema establece que cualquier función continua de múltiples variables se puede construir a
partir de sumas de funciones de una variable, siempre que todas sus entradas estén acotadas
en un rango finito. Esto significa que podemos representar cualquier f : [ak, bk]

n 7→ R a partir
de sumas y funciones de una variable. Específicamente, podemos re-escribir f de la siguiente
forma, siendo gi : R 7→ R y hi,j : [ai, bi] 7→ R:

f(x1, . . . , xn) =
2n∑
i=0

gi

 n∑
j=1

hi,j(xj)

 (3.1)

Como se puede ver en la ecuación 3.1, podemos representar cualquier función de n variables a
partir de 2(n+1) funciones gi y (2n+1)×n funciones hi,j . Aunque pueda parecer sorprendente,
este teorema se puede aplicar a cualquier función continua cuyas entradas estén acotadas, por
lo que siempre tiene que existir para este tipo de funciones una forma de descomponerlas en
funciones de una única variable. Analizando en detalle la fórmula 3.1, la función está dividida
en dos capas, la primera formada por los resultados de las funciones hi,j y la segunda formada
por las funciones gi:

f(x1, . . . , xn) =
2n∑
i=0

gi︸ ︷︷ ︸
2ª capa

(
n∑

j=1

hi,j(xj)︸ ︷︷ ︸
1ª capa

)
(3.2)

La arquitectura KAN, como veremos en los siguientes apartados, es una generalización de
esta representación de funciones de varias variables como sumas de funciones de una variable.

3.2 Capas KAN
Las redes KAN, al igual que las redes neuronales tradicionales, también se organizan en capas,
con el fin de poder diseñar, entrenar y utilizar redes con una gran cantidad de parámetros
sin tener que especificar todo manualmente. De forma similar a las redes MLP, además, las
redes KAN también normalmente comparten la configuración para todas las neuronas de una
capa de la red, de forma que se compartan de forma similar y se conectan de la misma forma
con otras capas de la red.

No obstante, a pesar de todas estas similitudes la estructura interna de una capa KAN
es muy diferente a las de las redes tradicionales. Mientras que las redes tradicionales están
formadas por matrices de pesos lineales, las capas KAN se organizan como sumas de funciones
de una variable, de forma similar a las capas vistas en la fórmula del teorema de representación
de Kolmogórov-Arnold (ver ecuación 3.2).
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Al estar formadas por capas, las capas utilizadas por las redes KAN son compatibles con
las capas de las redes tradicionales. De esta forma, se pueden construir modelos mixtos que
utilicen capas KAN y capas tradicionales a la vez.

3.2.1 Capas densas
Las capas densas de las redes KAN, como ya se ha mencionado anteriormente, están direc-
tamente basadas en las capas de funciones del teorema de representación de Kolmogórov-
Arnold. De esta forma, cada salida de una capa KAN densa está formada por una suma de
funciones de una variable de todas las entradas de la capa.

1

x1

. . .

xn

w⊺
i

yiσ

(a) Cálculo de una salida de una capa densa MLP

x1

. . .

xn

φ1,i

. . .

φn,i

yi

(b) Cálculo de una salida de una capa densa KAN

Figura 3.1: Comparación del cálculo de una salida de una capa densa MLP (a) con el de una capa
densa KAN (b). Hágase notar que en la capa densa MLP la no linearidad (σ) se procesa
después de la suma, mientras que en la capa KAN las no linealidades (φ1,i, . . . , φn,i) se
procesan antes de la suma. Fuente: elaboración propia

Para una capa KAN de n entradas y m salidas, necesitaremos n×m funciones de una variable
para construir una capa densa KAN. Sean φi,j : R 7→ R las funciones de una variable de la
capa, tenemos la siguiente fórmula para calcular las salidas de la capa, de forma que la función
φi,j recibe la entrada xi y afecta a la salida yj :

yj =
∑
i

φi,j(xi) (3.3)

De forma similar a las capas tradicionales, también podemos representar la capa mediante
el uso de matrices, utilizando una matriz de funciones Φ : Rn 7→ Rm que contiene todas las
funciones φi,j de la capa:

y =

 y1...
ym

 =

φ1,1(·) . . . φn,1(·)
... . . . ...

φ1,m(·) . . . φn,m(·)


︸ ︷︷ ︸

Φ

x1...
xn

 (3.4)

A partir de la fórmula 3.4, podemos ver que la estructura de las capas densas KAN es similar
a la estructura de las capas densas tradicionales (ver ecuación 2.5), solo que sustituyendo
cada uno de los pesos encontrados en la capa densa tradicional por una función φ. Además,
cabe destacar que las capas densas KAN no tienen un término de bias, ya que el sesgo está
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contenido en las funciones φi,j de la capa, como se puede observar en la figuras 3.1 y 3.2.
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x1
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1
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σ

(a) Capa densa MLP

x1

. . .

xn

φ1,•

. . .

φn,•

y1

. . .

ym

(b) Capa densa KAN

Figura 3.2: Comparación de la estructura de una capa densa de una red MLP (a) con una capa densa
de una red KAN (b). En las capas densas MLP primero se suma y luego se aplica la
función no lineal (σ), mientras que en las KAN primero se aplican funciones no lineales a
todas las entradas (φ1,•, . . . , φn,•) y después se suman los resultados obtenidos. Fuente:
elaboración propia

Una capa densa KAN de n entradas y m salidas, si cada una de las funciones de la capa
tienen k parámetros entrenables (ver apartado 3.3), tiene O(nmk) parámetros entrenables.
Esto, aunque en teoría es bastante mayor que los O(nm) parámetros entrenables requeridos
para entrenar una capa densa MLP, en la práctica no es tan problemático, ya que gracias al
mayor poder representativo de las redes KAN se pueden reducir las neuronas de una capa
significativamente manteniendo un nivel de rendimiento similar al de una capa MLP con
mayor cantidad de parámetros [6].

3.2.2 Capas convolucionales

Como ya se ha analizado y estudiado en el apartado 2.3.2, las capas convolucionales permiten
a los modelos de machine learning aprender de forma mucho más efectiva y eficiente los
patrones internos de datos estructurados, como imágenes o ficheros de audio. Basándonos en
la división de funciones en capas de funciones de una variable presentada por el teorema de
representación de Kolmogórov-Arnold (ver ecuación 3.2), es posible generalizar la estructura
de las convoluciones tradicionales para que estén basadas en sumas de funciones de una
variable. De esta forma, obtenemos las convoluciones KAN [39].

Las convoluciones KAN, matemáticamente, son similares a las convoluciones discretas tra-
dicionales, solo que se ha sustituido el kernel lineal de las convoluciones tradicionales por
un kernel formado por funciones no lineales de una variable. De esta forma, cada una de las
salidas de la convolución se obtiene a partir de una suma de las salidas de las funciones del
kernel, manteniendo la estructura de las capas convolucionales MLP a la vez que implementa
la suma de funciones del teorema de representación [40]. En la figura 3.3 se puede ver una
representación visual de una operación de convolución KAN de dos dimensiones.
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Figura 3.3: Representación de una convolución KAN 2D. Fuente: elaboración propia, basada en [16]

Al igual que para las capas convolucionales tradicionales, las dimensiones del kernel de una
capa convolucional KAN dependen de la cantidad de dimensiones de los datos de entrada de
la capa (ver apartado 2.3.2). Para datos 2D, siguiendo el ejemplo de las redes convolucionales
tradicionales establecido en la ecuación 2.7, siendo x ∈ Rn×m×s la entradas de la capa y
φk : R 7→ Rp×q×s los kernels de la capa, podemos definir el comportamiento de la capa a
partir de las convoluciones KAN (denotadas como x⊛ y) de la siguiente forma:

yi,j,k = (x⊛ φk)i,j =
∑
a,b,c

φk
a,b,c (xi+a,j+b,c) (3.5)

De forma similar a las capas densas KAN, las capas convolucionales KAN también tienen
una cantidad de parámetros superior que las capas convolucionales MLP. Para una capa
convolucional con kernels de tamaño p × q × s, teniendo cada una de las funciones de los
kernels k parámetros entrenables, tenemos O(p q s k) parámetros entrenables, comparados
con los O(p q s) de las capas convolucionales tradicionales.

3.3 Funciones KAN

Las capas KAN, ya sean densas o convolucionales, están basadas en las suma de funciones
de una variable, tal y como se especifica en el teorema de representación de Kolmogórov-
Arnold (ver apartado 3.1). Para poder construir las capas KAN en acorde con el teorema de
representación, es necesario idear un método de construcción de funciones cuyas funciones
resultantes sean capaces de aproximar cualquier función de una variable. En otras palabras,
necesitamos una serie de fórmulas matemáticas que nos permitan aproximar cualquier función
f : R 7→ R.

Este método, no obstante, deberá además satisfacer las siguientes propiedades para que su
uso en las redes KAN sea ideal:

• Las funciones deberían tener una cantidad variable de parámetros, de forma que a mayor
cantidad de parámetros mayor sea el detalle de la función producida. Esto permite
variar la cantidad de parámetros dependiendo de la complejidad de las funciones de
una variable a aprender, añadiendo flexibilidad y permitiendo la implementación de
ciertas técnicas avanzadas a la hora de entrenar modelos KAN (ver apartado 3.3.1.3)
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• Las funciones producidas deberían ser continuas y derivables en todo su dominio, con el
fin de poder hacer uso de métodos de entrenamiento basados en el cálculo de gradientes
y backpropagation (ver apartado 3.4.1)

• Las funciones deberían poder aproximar cualquier función de una variable dados los
suficientes parámetros. Si el método de aproximación de funciones de una variable no
es capaz de aproximar cualquier función, es posible que la red no sea capaz de aproximar
cualquier resultado, y que eso cree limitaciones o dificultades a la hora de entrenar la
red [41].

• La evaluación de estas funciones debería de ser rápida y eficiente, con el fin de minimizar
el coste y tiempo necesario para entrenar y utilizar la red KAN producida.

• La cantidad de parámetros entrenables necesarios para poder representar estas funciones
debería ser lo más baja posible, con el fin de minimizar el tamaño de los modelos
obtenidos y, además, de prevenir ciertos problemas a la hora de entrenar el modelo [7].

Aunque hay muchos métodos y técnicas matemáticas que satisfacen estas propiedades, en las
redes KAN normalmente se utilizan splines para implementar las funciones entrenables de
una variable [6, 42].

3.3.1 Splines
Una spline, matemáticamente, es una función continua y derivable construida por varios
trozos polinómicos. El orden k de la spline determina el orden de los polinomios que la
constituyen. Estos trozos se controlan por los nodos ti de la spline, que marcan a partir de
que valor acaba un trozo y empieza el siguiente. Los nodos de una spline tienen que cumplir
que t0 ≤ t1 ≤ · · · ≤ tm−1. Una spline solo puede tener valores distintos de 0 en el intervalo
[t0, tm−1].

Figura 3.4: Ejemplo de una spline uniforme en el que se han representado las funciones base
de orden 3 de la spline (B0,3, . . . , B6,3; en varios colores), junto a la spline resul-
tante al combinar todas estas funciones base (S, en negro), utilizando los valores
αi = (0.5, 1.5, 2.5, 1.5, 0.5, 1.5, 2.5, 1.5, 0.5, 1.5) para combinar las funciones base. La spli-
ne tiene nodos en 0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4 y es de orden 3. Fuente: elaboración propia

Cada una de las funciones base depende únicamente de los nodos ti de la spline, y solo
produce valores en el intervalo [0, 1]. Una vez establecidos los nodos de la spline (y por lo
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tanto también las funciones base), podemos aproximar cualquier función como una suma
ponderada de funciones base [41]. Por lo tanto, si Bi,k : R 7→ [0, 1] son las funciones base de
orden k para unos nodos ti, y αi es valor por el que multiplicamos Bi,k en la suma ponderada,
podemos calcular la salida de la spline S : R 7→ R con la siguiente fórmula:

S(x) =
∑
i

αiBi,k(x) (3.6)

Cabe destacar que, para aproximar cualquier función de una variable utilizando splines,
únicamente es necesario variar los parámetros αi. Los parámetros Bi,k o ti no son necesarios
para poder aproximar cualquier función utilizando splines [41]. Un ejemplo de esto se puede
ver en la figura 3.5, en la que se ha utilizado una spline para aproximar la función sincx = sinx

x
obteniendo los parámetros αi correspondientes a partir de unos ti dados.

Figura 3.5: Spline uniforme de orden 3 aproximando sincx en el intervalo
[
0, 2π

]
, representando la

spline final junto con todas las funciones base (B0,3, . . . , B17,3) multiplicadas por su valor
correspondientes (α0, . . . , α17). Los valores de los nodos, distribuidos uniformemente en
el intervalo

[
0, 2π

]
, se han representado como líneas verticales grises. Fuente: elaboración

propia

Aunque las splines requieran muchos parámetros y cálculos para definirse completamente,
ya que hay que definir ti y calcular todas las Bi,j correspondientes a partir de estos valores,
realizar aproximación de funciones una vez obtenidas las funciones base Bi,j es relativamente
simple, ya que únicamente es necesario variar los parámetros αi, dejando todos los otros tér-
minos fijos. En las implementaciones KAN eficientes, esta propiedad se explota para calcular
todas las Bi,j primero, y luego reutilizando los valores obtenidos con todos los parámetros αi

diferentes de todas las splines de la red [43].

3.3.1.1 Funciones base

A partir de los nodos de una spline, podemos definir las funciones base de la misma. Una spline
de orden k tiene funciones base de orden 0, 1, . . . , k. Dependiendo del orden, las funciones
base de una spline se comportan de forma diferente:

• Funciones base de orden 0: son funciones que devuelven 1 si x están entre los nodos ti
y ti+1, o 0 si no.

• Funciones base de orden 1: interpolan linealmente entre dos funciones base de orden 0,
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en el rango [ti, ti+2]

• Funciones base de orden 2: interpolan cuadráticamente entre dos funciones base de
orden 1, en el rango [ti, ti+3]

• Funciones base de orden k: realizan una interpolación de orden k entre dos funciones
base de orden k − 1, en el rango [ti, ti+k+1]

Se puede ver una representación visual de las funciones base de orden 0, 1, 2 y 3 de una spline
en la figura 3.6.

(a) Funciones base de orden 0 (b) Funciones base de orden 1

(c) Funciones base de orden 2 (d) Funciones base de orden 3

Figura 3.6: Funciones base de orden 0 (a), orden 1 (b), orden 2 (c) y orden 3 (d) para una spline
uniforme de orden 3, con nodos 0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4. Fuente: elaboración propia

Matemáticamente, las funciones base de una spline se definen utilizando las fórmulas de Cox-
de Boor [44]. Esta fórmula define en el caso base las funciones base de orden 0, y a partir de
ahí define recursivamente las funciones base de orden superior. Sean ti los nodos de la spline,
y teniendo t0 ≤ t1 ≤ · · · ≤ tm−1 podríamos definir las funciones base de la siguiente forma:

Bi,0(x) =

{
1 si ti ≤ x < ti+1

0 en otro caso

Bi,k(x) =
x− ti

ti+k − ti
Bi,k−1(x) +

ti+k+1 − x

ti+k+1 − ti+1
Bi+1,k−1(x)

(3.7)

Aunque esta es la forma en la que se suele presentar la fórmula de Cox-de Boor, esta es una
simplificación, ya que no tiene en cuenta que es posible que dos nodos adyacentes coincidan
(ti = ti+1 para algún valor i). En este caso, si se estudia en detalle el caso recursivo de la
fórmula de Cox-de Boor, se estaría realizando una división por 0 a la hora de calcular alguna
de las funciones base de orden 1. Además, si llegasen a coincidir varios nodos seguidos, también
se estaría efectuando esta división por cero a la hora de calcular ciertas funciones base de
órdenes superiores.

Para que la fórmula de Cox-de Boor funcione correctamente incluso en estos casos, se añade
la condición de que, cuando se realice una división por cero en la fórmula Cox-de Boor, hay
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que considerar que el resultado de la división es 0. En otras palabras, hay que considerar
a/0 = 0 para que la fórmula 3.7 funcione correctamente en todos los casos.

Si se incorpora este comportamiento (a/0 = 0) a la ecuación de Cox-de Boor en sí, se
obtienen las siguientes ecuaciones:

Bi,0(x) =

{
1 si ti ≤ x < ti+1

0 en otro caso

bi,k,1(x) =

{
x−ti

ti+k−ti
Bi,k−1(x) si ti+k 6= ti

0 en otro caso

bi,k,2(x) =

{
ti+k+1−x

ti+k+1−ti+1
Bi+1,k−1(x) si ti+k+1 6= ti+1

0 en otro caso
Bi,k(x) = bi,k,1(x) + bi,k,2(x)

(3.8)

Aunque todo esto pueda parecer un detalle menor, resulta que en el contexto de las redes
KAN es una distinción bastante importante, ya que como veremos en el apartado 3.3.1.3 las
splines más utilizadas en las redes KAN suelen tener varios nodos que coinciden.

3.3.1.2 Derivadas

Como ya se ha visto anteriormente, para entrenar modelos de inteligencia artificial es casi
siempre necesario calcular las derivadas respecto al error de la salida producido por el modelo.
Las derivadas de las splines pueden ser calculados a partir de la fórmula Cox-de Boor [45].
Las derivadas obtenidas a partir de derivar la fórmula 3.7 se pueden ver a continuación:

S′(x) =
∑
i

αiB
′
i,k(x)

B′
i,k(x) =

k

ti+k − ti
Bi,k−1(x)−

k

ti+k+1 − ti+1
Bi+1,k−1(x)

(3.9)

Al igual que para la fórmula de Cox-de Boor, para que la fórmula de las derivadas funcione
cuando dos nodos coinciden hay que considerar que a/0 = 0. Teniendo esto en cuenta, la
fórmulas para calcular las derivadas de las funciones base de una spline son las siguientes:

B′
i,k(x) = b′i,k,1(x)− b′i,k,1(x)

b′i,k,1(x) =

{
k

ti+k−ti
Bi,k−1(x) si ti+k 6= ti

0 en otro caso

b′i,k,2(x) =

{
k

ti+k+1−ti+1
Bi+1,k−1(x) si ti+k+1 6= ti+1

0 en otro caso

(3.10)
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3.3.1.3 Splines uniformes y grid intervals

En el contexto de las redes KAN, se suelen utilizar splines uniformes para representar las
funciones de una variable, ya que tienen muchas propiedades deseables, como que mantienen
la continuidad para todas las derivadas en todo su dominio [46] o que son relativamente
eficientes de calcular.

Para hacer que una spline sea uniforme, simplemente es necesario repetir el primer y último
nodo k veces, siendo k el orden de la spline. De esta forma, tendríamos los siguientes nodos:

t = ( t0, t1, . . . , tk−1︸ ︷︷ ︸
nodos iniciales

, tk, . . . , tm−k−1︸ ︷︷ ︸
nodos centrales

, tm−k, . . . , tm−1︸ ︷︷ ︸
nodos finales

), (3.11)

En la fórmula 3.11, todos los nodos iniciales iguales al primer nodo central (t0 = t1 = · · · = tk)
y todos los nodos finales son iguales al último nodo central (tm−k−1 = tt−k = · · · = tm−1).
Por lo tanto, si utilizamos splines uniformes, los únicos valores necesarios para definir los
nodos de la spline son los nodos centrales (tk, . . . , tm−k−1).

En el contexto de las KAN, a los nodos centrales en las splines uniformes se le suele llamar
la grid de la spline. Introduciremos a partir de aquí la notación gi para representar la grid,
teniendo g = (g0, . . . , gm−2k−1) = (tk+1, . . . , t2k). El vector de nodos t, expresado utilizando
esta notación, sería el siguiente:

t = ( g0, g0, . . . , g0︸ ︷︷ ︸
nodos iniciales

, g0, g1, . . . , gm−2k−1︸ ︷︷ ︸
nodos centrales (grid)

, gm−2k−1, . . . , gm−2k−1︸ ︷︷ ︸
nodos finales

) (3.12)

Por razones de eficiencia, los nodos de la grid se suelen distribuir uniformemente en todo el
rango de la grid [43]. Por lo tanto, tenemos dos parámetros para controlar completamente los
nodos de las splines:

• Tamaño de la grid (G): la cantidad de nodos de la grid. Puede variar enormemente
dependiendo de la complejidad de las funciones que se están intentando aproximar y
del tamaño de la red KAN.

• Rango de la grid: intervalo de valores en el que se distribuyen los nodos de la grid. Suele
ser [0, 1] o [−1, 1], excepto en las capas de salida.

3.3.1.4 Alternativas

Aunque en las redes Kolmogorov-Arnold normalmente se utilizan splines, tal y como propuso
la publicación original [6], se han ido desarrollando varias alternativas adicionales. Muchas
de estas alternativas, aunque más complejas matemáticamente, tienen algunas características
interesantes que hacen que funcionen mejor en ciertos casos. Las alternativas más importantes
a las splines en las redes KAN son las siguientes:

• Polinomios de Chebyshev: basados en la fórmula de recurrencia de Chebyshev [47], esta
familia de polinomios también es capaz de aproximar funciones de una variable. Hay
varios estudios e implementaciones utilizándolos como alternativa más eficiente a las
splines en ciertos casos [48, 49].
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• Series de Fourier: utilizan series de Fourier [50] para aproximar las funciones de una
variable. Aunque las series de Fourier tengan menos estabilidad numérica en sus extre-
mos [51], tienden a ser más estables en su centro que otros métodos, permitiendo que
en ciertos casos funcionen mejor [52, 53].

• Polinomios de Jacobi: basados en la función hipergeométrica y la función gamma [54,
55], estos polinomios son bastante interesantes a la hora de aproximar funciones con
gran variabilidad, aunque son bastante más costosos de calcular que otras alternativas
[56, 57].

• Wavelets: basados en la transformada ondícula utilizada en el procesamiento de señales
[58], los wavelets son capaces de aproximar fácilmente y con relativamente pocos pa-
rámetros funciones con una gran variabilidad y que pueden contener con componentes
cíclicos [59, 60]. No obstante, pierden precisión a la hora de representar funciones que
no varían rápidamente [61].

• Activaciones ReLU: utilizan polinomios de activaciones ReLU y otras combinaciones
de activaciones para aproximar funciones de una variable KAN. Aunque no sean tan
precisas como otros métodos, son mucho más rápidas que las KAN tradicionales, tienen
pocos parámetros y mantienen muchas de las propiedades interesantes de las redes KAN
[62, 63].

3.3.2 Función residual

Para implementar las redes KAN es necesario poder aproximar eficientemente funciones de
una variable. Esto se puede hacer mediante varios métodos de aproximación de funciones:
splines, polinomios de Chebyshev, etc. Sea f : R 7→ R la función obtenida por el aproximador
elegido, entonces tendríamos la siguiente definición para las funciones KAN utilizadas por la
red:

φ(x) = f(x) (3.13)

Esta definición, aunque sencilla, hace que las redes KAN sean muy costosas de entrenar en la
práctica [6, 43]. Es por esto que, aunque f ya es capaz de aproximar cualquier función de una
variable, se añade otra función adicional a las funciones KAN para mejorar su velocidad de
entrenamiento. Esta función es la función residual, que es fija (no entrenable). Además, tam-
bién se suele añadir un peso para la función residual y otro para la función del aproximador,
ambos entrenables. Sea f : R 7→ R la función del aproximador, wf ∈ R su peso, b : R 7→ R la
función residual y wb ∈ R su peso, podemos definir una función KAN φ de la siguiente forma:

φ(x) = wb b(x) + wf f(x) (3.14)

Al utilizar splines como el aproximador de la red KAN tendríamos la siguiente definición para
las funciones KAN de la red, siendo wb, wf y αi los parámetros entrenables:

φ(x) = wb b(x) + wf

∑
i

αiBi,k(x) (3.15)
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Para las funciones residuales casi siempre se eligen funciones no lineales, ya que juegan un
papel similar al de las funciones de activación tradicionales en las primeras fases del entre-
namiento de la red [6]. Especialmente, se suele elegir la función SiLU (Sigmoid Linear Unit),
con la que se tiene b(x) = x/(1 + e−x) en las ecuaciones 3.14 y 3.15.

3.4 Entrenamiento
El entrenamiento de las redes KAN es muy similar al entrenamiento de las redes neuronales
tradicionales. Al igual que estas últimas, las redes KAN generalmente se entrenan calculando
el error observado en la salida producida por la red, comparando las salidas producidas con
las salidas esperadas para ciertos datos de entrada. A partir de este error y mediante el uso
de retropropagación (backpropagation), es posible obtener los gradientes respecto al error de
todos los parámetros de la red. Una vez calculados los gradientes, se utiliza un optimizador
para variar los parámetros de la red de forma eficiente, al igual que en las redes neuronales
tradicionales (ver el apartado 2.4).

3.4.1 Retropropagación
Al igual que con las redes tradicionales, las gradientes de las redes KAN se calculan mediante
retropropagación. No obstante, como la estructura de las capas es diferente, los gradientes de
la red también se van a tener que calcular de forma diferente. En una red KAN típica que
utilice splines, tal y como se puede ver en la ecuación 3.15, tenemos los pesos entrenables
wb y wf , junto con los parámetros entrenables de la spline αk. Para poder entrenar una red
KAN, tenemos que calcular las derivadas de estos pesos frente al error E de la red.

El primer paso para poder calcular todo esto es darse cuenta de que cualquiera de estos
parámetros únicamente afecta su salida correspondiente de la capa. Por lo tanto, podemos
descomponer las derivadas de la siguiente forma, siendo wl

b,i,j , wl
f,i,j y αl

k,i,j los parámetros
wb, wf y αk de la capa l de la red para la entrada i y la salida j, y xli la entrada i de la capa
l:

∂E

∂wl
b,i,j

=
∂E

∂xl+1
j

∂xl+1
j

∂wl
b,i,j

∂E

∂wl
f,i,j

=
∂E

∂xl+1
j

∂xl+1
j

∂wl
f,i,j

∂E

∂αl
k,i,j

=
∂E

∂xl+1
j

∂xl+1
j

∂αl
k,i,j

(3.16)

Al igual que se ha hecho para la sección de backpropagation de las redes neuronales tradi-
cionales, se ha utilizado la notación δl para denotar los deltas de la capa l. Los deltas son
los valores intermedios que se propagan hacia atrás entre capas (ver apartado 2.4.1 para más
detalles), siendo definidos para las redes neuronales tradicionales como la derivada del error
respecto a la multiplicación de las entradas y los pesos (∂E/∂w⊺x). No obstante, para las
redes KAN necesitamos utilizar una definición alternativa (ya que la matriz de pesos w no
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existe), por lo que se suelen definir a partir como la derivada del error respecto a las entradas
de la capa (∂E/∂x). Por lo tanto, tenemos que δli = ∂E/∂xli.

Utilizando esta definición, podemos simplificar las fórmulas de la ecuación 3.16 sustituyendo
los términos ∂E/∂x por los deltas correspondientes:

∂E

∂wl
b,i,j

= δl+1
j

∂xl+1
j

∂wl
b,i,j

∂E

∂wl
f,i,j

= δl+1
j

∂xl+1
j

∂wl
f,i,j

∂E

∂αl
k,i,j

= δl+1
j

∂xl+1
j

∂αl
k,i,j

(3.17)

Aunque la definición es un poco diferente, sigue siendo posible calcular directamente los deltas
de la última capa utilizando la función de pérdida. Sea L la cantidad de capas de la red (y
por lo tanto el índice de la última capa), y sea E′ la derivada del error respecto a las salidas
de la última capa, tenemos la siguiente ecuación para calcular δL:

δLi =
∂E

∂xLi
= E′

i (3.18)

Para calcular los deltas de las otras capas de la red, es necesario conocer los deltas de la
capa anterior, por lo que tenemos que calcular δl a partir de δl+1. Para esto, primero vamos
a obtener la relación entre δl y δl+1 a partir de la definición:

δli =
∂E

∂xli
=
∑
j

(
∂E

∂xl+1
j

∂xl+1

∂xli

)
=
∑
j

(
δl+1
j

∂xl+1
j

∂xli

)
(3.19)

Como se puede ver en la ecuación 3.19, para calcular δl a partir de δl+1 es necesario calcular
el término ∂xl+1

j /∂xli. Este término dependerá del tipo de capa y de las fórmulas empleadas.
Para desarrollar el resto de este apartado, a partir de aquí se asume que estamos tratando
con una capa densa KAN basada en splines sin ninguna modificación particular, por lo que
se obtiene la siguiente fórmula:

xl+1
j =

∑
i

φl
i,j(x

l
i) (3.20)

A partir de esto, es posible calcular ∂xl+1
j /∂xli:

∂xl+1
j

∂xli
=

∂
∑

i φ
l
i,j(x

l
i)

∂xli
=
∑
i

∂φl
i,j(x

l
i)

∂xli
=
∑
i

φ′l
i,j(x

l
i) (3.21)

Para obtener la fórmula final para el cálculo de δi, sustituimos el resultado de la ecuación
3.21 en la ecuación 3.19:
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δi =
∑
j

(
δl+1
j

∂xl+1
j

∂xli

)
=
∑
j

(
δl+1
j

∑
i

φ′l
i,j(x

l
i)

)
(3.22)

Podemos obtener la derivada de φ(x) a partir de su definición:

φ′l
i,j(x) =

(
wl
b,i,jb(x

l
i) + wl

f,i,jfi,j(x
l
i)
)′

= wl
b,i,jb

′(xli) + wl
f,i,jf

′l
i,j(x

l
i) (3.23)

A partir de las ecuaciones 3.18 y 3.22, podemos calcular todos los deltas de la red δ1, . . . , δL

secuencialmente. Una vez se han calculado los deltas de todas las capas, solo es necesario
calcular los términos ∂xl+1

j /∂wl
b,i,j , ∂x

l+1
i /∂wl

f,i,j y ∂xl+1
i /∂αl

k,i,j para obtener todas las de-
rivadas de todos los parámetros de la red. Podemos calcular la derivada de wb con un poco
de desarrollo:

∂xl+1
j

∂wl
b,i,j

=
∂
∑

j φ
l
i,j(x

l
i)

∂wl
b,i,j

=
∂φl

i,j(x
l
i)

∂wl
b,i,j

=
∂wl

b,i,jb
l(xli) + wl

f,i,jf(x
l
i)

∂wl
b,i,j

= bl(xli) (3.24)

De forma muy similar también se puede calcular la derivada de wf :

∂xl+1
j

∂wl
f,i,j

=
∂
∑

j φ
l
i,j(x

l
i)

∂wl
f,i,j

=
∂φl

i,j(x
l
i)

∂wl
f,i,j

=
∂wl

b,i,jb
l(xli) + wl

f,i,jf
l
i,j(x

l
i)

∂wl
f,i,j

= f l
i,j(x

l
i) (3.25)

Como estamos utilizando una spline como aproximador, podemos calcular las derivadas de
los parámetros αk a partir de la ecuación 3.10. Si estuviésemos utilizando otro aproximador,
habría que calcular las derivadas de sus parámetros de la forma que corresponda.
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Si sustituimos los resultados de las ecuaciones 3.24, 3.25 y 3.26 en la ecuación 3.16 obtenemos
las fórmulas para calcular las derivadas respecto al error de todos los parámetros de la red:
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Utilizando estas fórmulas, podemos aplicar backpropagation de la misma forma que para las
redes neuronales tradicionales, y por lo tanto obtener todas las derivadas respecto al error de
todos los parámetros de cualquier red KAN.
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3.4.2 Grid extension

Una propiedad interesante de muchos de los aproximadores de funciones de una variable
utilizados en las redes KAN (splines, polinomios de Chebyshev, etc.) es que se pueden sustituir
fácilmente por aproximadores con una mayor cantidad de parámetros sin variar prácticamente
la función producida por el aproximador. Por ejemplo, en el caso de estar utilizando splines,
hay que sustituir la spline por otra que tenga una grid con mayor cantidad de nodos, y
calcular para esta última los parámetros necesarios para que la función producida sea lo más
parecida posible a la producida por la spline original.

Gracias a esta técnica, es posible empezar entrenando la red con pocos parámetros en cada
aproximador e ir aumentando gradualmente la cantidad de parámetros a la que avanza el
entrenamiento. A todo este proceso se conoce como grid extension, o extensión de la grid.
Se puede ver una representación visual del proceso de grid extension aplicado a splines en la
figura 3.7.

Figura 3.7: Representación visual del proceso de grid extension, mostrando la transformación de
una spline con G (tamaño de la grid) = 5 a una con G = 10. La spline original tiene 7
funciones base, mientras que la spline expandida tiene 12 funciones base. Fuente: [6]

Al utilizar grid extension es posible entrenar la red con pocos parámetros en las primeras
fases del entrenamiento, cosa que hace que aumente mucho la velocidad de entrenamiento
pero reduce el detalle que es capaz de representar el modelo. A partir de ahí, una vez el
modelo ya ha optimizado la estructura general de la función objetivo, se va aumentando poco
a poco la cantidad de parámetros, que tiene el efecto de aumentar la cantidad de detalle que
es capaz de representar el modelo. Progresivamente, la precisión obtenida por el modelo sigue
aumentando, hasta alcanzar la cantidad óptima de detalle para la función que está siendo
optimizada. Seguir añadiendo parámetros después de alcanzar la cantidad óptima hace que
el modelo tenga parámetros innecesarios y que en ciertos casos se puedan obtener peores
resultados que un modelo con la cantidad de parámetros óptima [7].

Al medir regularmente el rendimiento del modelo, es posible detectar la cantidad de pará-
metros óptima para maximizar el rendimiento del modelo sin continuar aumentando innecesa-
riamente la cantidad de parámetros del mismo. Esto hace que el modelo final tras aplicar grid
extension durante el entrenamiento tenga un mayor rendimiento y una menor cantidad de
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parámetros, además de reducir también la cantidad de recursos dedicados al entrenamiento
en las primeras fases.

El procedimiento de grid extension se puede implementar de muchas formas. La más sencilla
y la utilizada en el artículo original que propuso las redes KAN es aumentar la grid en ciertas
épocas, de forma que la red tenga suficiente tiempo entre extensiones para acercarse al mínimo
de pérdida local para esa cantidad de parámetros. Un ejemplo de esto se puede ver en la figura
3.8.

Figura 3.8: Error de entrenamiento (train) y de generalización (test) de una red KAN entrenada con
grid extension en intervalos fijos, mostrando en rojo el punto en el que el modelo genera
el menor error de test. Se puede ver como, aunque al aumentar el tamaño de la grid el
error de entrenamiento siempre disminuye, para el error de generalización si que existe
un punto óptimo en el que deja de disminuir y empieza a aumentar. Fuente: [6]

Normalmente, la grid extension se suele implementar con extensiones en puntos arbitrarios del
entrenamiento, quedando normalmente a decisión del programador el punto exacto en la que
se realiza cada extensión y el tamaño de la grid que pasará a tener la red tras cada extensión.
No obstante, otros esquemas más sofisticados que el mostrado anteriormente implementan
la grid extension de forma dinámica, aumentándola automáticamente cuando ven que el
rendimiento del modelo se ha quedado estancado con la cantidad de parámetros actual.

3.4.2.1 Cálculo de parámetros de los aproximadores

Aunque no existe una fórmula exacta para obtener los nuevos parámetros de cada aproximador
tras realizar una grid extension, podemos utilizar métodos de optimización numérica que
hagan que las funciones producidas antes y después de la grid extension sean lo más parecidas
posible. Por ejemplo, podríamos minimizar el error cuadrático producido por la función para
los valores del conjunto de entrenamiento. Sea α los parámetros del aproximador original, β
los parámetros tras expandir la grid, fα y fβ las salidas producidas por el aproximador para
los parámetros α y β, y X el conjunto de entrenamiento, se obtiene la siguiente fórmula para
describir los parámetros tras realizar la grid extension:

β = argmin
βi∈R

∑
x∈X

(fβ(x)− fα(x))
2 (3.28)

Las fórmulas de fα y fβ dependen de los aproximadores que se estén utilizando en la red.
En el caso de que se estén utilizando splines, a partir de la definición obtenemos fα(x) =
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∑
i αiBi,k(x), por lo que tendríamos la siguiente expresión para obtener los nuevos parámetros

tras la expansión de la grid:

β = argmin
βi∈R

∑
x∈X

(∑
i

βiB
′
i,k(x)−

∑
i

αiBi,k(x)

)2

(3.29)

Hay que destacar que en la ecuación 3.29 las funciones base de fα y fβ no son iguales
(Bi,k(x) 6= B′

i,k(x)), ya que expandir la grid modifica los nodos de la grid, y por lo tanto
también modifica las funciones base.

3.5 Propiedades
Las redes KAN, gracias a su arquitectura basada en la suma de funciones de una variable,
tienen propiedades muy interesantes al ser comparadas con las redes neuronales tradicionales.
En este aparatado se enumeran y explican las propiedades más importantes y su utilidad en
el campo de la inteligencia artificial.

3.5.1 Interpretabilidad
Las redes KAN, al estar basadas en la suma de funciones, son mucho más interpretables que
las redes neuronales tradicionales. Mientras que las redes neuronales tradicionales necesitan
una gran cantidad de pesos y capas para aproximar de forma precisa relaciones complejas,
las redes KAN no necesitan muchas capas, ya que son capaces de aproximar tanto de forma
local (en cada uno de los aproximadores) como global (en la red como conjunto). De esta
forma, se pueden representar relaciones complejas de forma relativamente sencilla, mientras
que con redes neuronales tradicionales esto es una tarea mucho más compleja, y el resultado
normalmente es mucho más difícil de interpretar. Se puede ver un ejemplo de esto en la figura
3.9.

Figura 3.9: KAN entrenada para aproximar la función esin(πx1)+x2
2 . Como se puede ver, la red ha

aprendido la estructura de la función, habiendo obtenido una función con forma de
sin(πx) para x1, otra con forma de x2 para x2, y una con forma de ex para la suma de
ambas funciones anteriores. La opacidad de las funciones indica la escala de cada una.
Fuente: [6]

Esto es especialmente cierto cuando las relaciones entre las entradas y las salidas de la red
son funciones continuas, ya que la red KAN que utilicemos para aprender estas funciones
probablemente aprenderá directamente la estructura matemática de las relaciones entre las
entradas y las salidas, en vez de aproximar estas relaciones como combinaciones de pasos
lineales y de funciones no-lineales, como hacen las redes neuronales tradicionales.
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3.5.1.1 Regresión simbólica

Es posible aprovechar la capacidad de las redes Kolmogórov-Arnold de aprender la estructura
interna de las relaciones entre variables para obtener la fórmula de la relación entre las
entradas y salidas producidas por la red. A este proceso se le conoce como regresión simbólica.

La regresión simbólica consiste en, básicamente, ver si las relaciones entre las entradas y
las salidas de una capa coinciden con funciones matemáticas pre-definidas. De esta forma, si
vemos que todos los componentes de una red KAN están representando funciones matemáti-
cas, podemos obtener una fórmula que represente la relación aprendida por la red. Siguiendo
el ejemplo de la figura 3.9, podemos ver en la figura 3.10 un ejemplo del proceso a seguir para
obtener la formula simbólica de una red KAN.

Figura 3.10: Regresión simbólica para una red KAN entrenada para aproximar la función
esin(πx1)+x2

2 . La opacidad de cada función indica la escala de la función. Fuente: [6]

Hay que destacar que, para poder realizar regresión simbólica de forma efectiva, no tenemos
solo que detectar funciones simples de una variable, si no también funciones complejas con
varios parámetros ajustables. Por ejemplo, si queremos detectar todas las posibles funciones
sinusoides, tenemos que detectar f(x) = c1 sin(c2x+c3), por lo que tenemos 3 parámetros (c1,
c2 y c3) que tenemos que ajustar para poder detectar este tipo de funciones. La cantidad de
parámetros crece rápidamente con la complejidad de las funciones que queremos detectar, por
lo que la regresión simbólica se suele limitar a funciones matemáticas relativamente simples
[64].

Aunque en teoría utilizando este método es posible obtener la función de una red KAN,
es posible que no sea posible obtener una función matemática para alguna de las relaciones
internas de la red KAN. En estos casos, podemos dejar indicado en la fórmula resultante
la expresión exacta utilizada para calcular esa representación, aunque dependiendo de la
cantidad de parámetros de la grid es posible que la fórmula obtenida sea enorme.

3.5.2 Aprendizaje continuo

Las redes neuronales tradicionales tienen una tendencia de olvidar los datos de aprendizaje
anteriores al aprender nueva información, de forma que solo se fijan en la información más
reciente. Este fenómeno se conoce como Catastrophic Forgetting, o olvido catastrófico. Es
por esto que, actualmente, hay que entrenar la red con todos los datos en el proceso de
aprendizaje, ya que si no la red rápidamente olvidará todos los patrones de los datos anteriores
y los reemplazará por los patrones de los datos nuevos.

Las redes KAN, gracias a su arquitectura y su descomposición en funciones de una variable,
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son más capaces de aprender nuevos datos sin tener que olvidar los patrones de los datos ya
aprendidos, especialmente en casos en los que los datos de entrenamiento son datos numéricos
continuos [6]. En estos casos, las redes KAN son capaces de mantener los conocimientos pre-
vios e incorporar a estos los patrones de los nuevos datos que está aprendiendo, sin necesitar
la inclusión de todos los datos previamente aprendidos en el conjunto de entrenamiento.

Figura 3.11: Entrenamiento por fases de una red KAN y MLP. En cada fase las redes se han entre-
nado con una parte de los datos. Como se puede ver, la red MLP olvida los datos de
las fases anteriores, mientras que la red KAN es capaz de mantenerlos y así aprender
correctamente el patrón de todos los datos. Fuente: [6]

Una de las mayores utilidades que puede tener esta propiedad de las redes KAN es la creación
de sistemas que sean capaces de aprender con datos en tiempo real. Actualmente, estos
datos tienen que ser concatenados con el resto de datos del conjunto de datos, lo que hace
que incorporarlos al modelo sea costoso y lento. Utilizando técnicas que se aprovechen del
aprendizaje continuo de las redes KAN es posible que puedan construir sistemas que aprendan
constantemente fuentes de datos en tiempo real, y por lo tanto que se puedan crear modelos
que siempre dispongan de los datos más actualizados.

3.5.3 Generalización de los datos
A la hora de entrenar modelos de inteligencia artificial, utilizamos grandes conjuntos de datos
para intentar preparar al modelo con todos los posibles casos que podría ver. No obstante,
a la hora de utilizar estos modelos en el mundo real, en la gran mayoría de los casos es
imposible darle al modelo de machine learning todos los posibles casos. Incluso con modelos
entrenados con conjuntos de datos enormes, siempre hay casos que el modelo no ha visto
durante el entrenamiento. Es por esto que la capacidad de generalización del modelo es tan
importante, ya que para funcionar correctamente en el mundo real el modelo tiene que ser
capaz de generalizar los conocimientos aprendidos durante el entrenamiento.

El caso más extremo de esto se conoce como detección fuera de la distribución, o Out-
Of-Distribution Detection en inglés. En estos casos, se intenta que el modelo sea capaz de
generalizar datos muy diferentes con los que ha sido entrenado, ya sean datos preprocesados
de forma diferente, datos de otro dataset, o datos sintéticos creados específicamente para
incurrir este tipo de generalización [65].
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Las redes KAN tienden a generalizar los datos aprendidos mucho mejor, de forma que
los modelos entrenados resultantes son capaces de lidiar con este tipo de datos de forma
mucho más efectiva [6], incluso teniendo una mejor capacidad de poder predecir correctamente
muestras de fuera de distribución. Las redes KAN pueden suponer un gran avance en ese
aspecto del machine learning, permitiendo la creación de modelos que se comporten de forma
más robusta ante datos nuevos, incluso siendo capaces en algunos casos de extraer información
correcta de datos radicalmente diferentes de los datos de entrenamiento originales.



4 Implementación en Python

Dado que las redes KAN son una arquitectura muy novedosa, con el fin de mostrar exacta-
mente su funcionamiento y dar a conocer como se podría llegar a realizar su implementación,
se ha realizado una implementación simple de las redes KAN en Python. Para simplificar el
código, se ha implementado una arquitectura secuencial en la que todas las capas de la red
son capas densas KAN, teniendo cada capa splines con grids fijas que no se pueden modificar
durante el entrenamiento. La función residual también es fija, siendo la función SiLU [66].

La implementación se ha realizado utilizando tres clases: KANNeuron, que implementa una
única función KAN junto con su spline; KANLayer, que implementa una capa densa KAN con
todas las funciones KAN correspondientes; y KAN, que implementa una red KAN completa.
Además de estas tres clases, se han implementado algunas funciones auxiliares que no son
parte de ninguna de las tres clases.

Durante la implementación, se ha intentado optimizar bastante el código, utilizando cuando
ha sido posible operaciones vectoriales de numpy [67], que son mucho más rápidas que las
operaciones equivalentes en Python estándar. No obstante, se ha decidido no realizar muchas
optimizaciones para priorizar la claridad y limpieza del código, ya que el objetivo principal
de esta implementación es mostrar el funcionamiento de las redes KAN de forma práctica.

4.1 Funciones auxiliares
A lo largo de la implementación se han utilizado unas pocas funciones auxiliares que no son
parte de ninguna de las 3 clases implementadas. Estas son la función sigmoide (sigmoid), la
función SiLU (silu) y la derivada de la función SiLU (silu_d). También se ha implementado
otra función más (nombrada zdiv), que calcula a/b, pero devuelve 0 cuando b = 0. Esta última
función es necesaria para implementar la fórmula de Cox-de Boor (ver ecuación 3.8).

1def sigmoid(x):
2 return 1 / (1 + np.exp(-x))
3

4def silu(x):
5 return np.multiply(x, sigmoid(x))
6

7def silu_d(x): # derivada de SiLU
8 s = sigmoid(x)
9 return np.multiply(s, (1 + x*(1-s)))

10

11def zdiv(a, b): # a/b, pero b=0 devuelve 0
12 with np.errstate(divide='ignore', invalid='ignore'): # ignorar warnings
13 c = np.true_divide(a,b)
14 c[c == np.inf] = 0

43
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15 return np.nan_to_num(c)

Código 4.1: Funciones auxiliares utilizadas en la implementación propia de redes KAN, que definen
las función base utilizada (SiLU), su derivada y la función zdiv, que implementa la
división de dos números pero devuelve 0 cuando el divisor es 0, y se utiliza para
implementar las fórmulas de Cox-de Boor

4.2 Clase KANNeuron
La clase más básica en la implementación es la clase KANNeuron, que representa una única
función KAN de la red. La clase implementa la spline de la función KAN, calculando todos
los parámetros y funciones base. Las variables de la clase son las siguientes:

• k: el grado de la spline

• b: el valor de la función residual

• b_d: el valor de la derivada de la función residual

• grid: la grid de la spline

• min: el valor mínimo de la grid

• max: el valor máximo de la grid

• bases: el valor de las funciones base de la spline

• bases_d: el valor de las derivadas de las funciones base de la spline

• s: el valor de la spline

• s_d: el valor de la derivada de la spline

• wb: el peso que de la función residual

• ws: el peso de la spline

Hay que mencionar que, aunque no lo parezca a primera vista, muchas de estas variables
son vectores (b, b_d, s, s_d) o matrices (bases, bases_d), ya que se calculan para varios
valores en paralelo. Cabe también decir que, por razones que veremos en el apartado 4.2.1,
es necesario que grid sea un vector fila (matriz 1× n) para que la implementación funcione
correctamente.

4.2.1 Método spline()
El método más complejo de la clase KANNeuron es el método spline(), que recalcula todas
las variables de la spline al recibir un nuevo conjunto de datos de entrada. Para implementarlo
de forma eficiente, se han empleado arrays de la librería numpy, que son capaces de realizar
operaciones en paralelo de forma mucho más eficiente que las estructuras predeterminadas
de Python [67]. El código de este método está basado en el código de splines de Prateek
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Gupta [42], aunque se ha modificado bastante para adaptarlo a los requerimientos de la
implementación actual.

El método recibe un parámetro, x, que es el conjunto de valores para el que hay que calcular
valores. La función requiere que x sea un vector columna (matriz m × 1) para funcionar
correctamente. El método, además, está basado en la fórmula de Cox-de Boor (ver ecuación
3.8). Como se puede ver en la fórmula, el primer paso es calcular el caso base, Bi,0. Para
calcularlo en paralelo para todos los puntos, extraeremos de grid las variables ti y ti+1,
utilizando la notación de slicing de Python [68]. A partir de ti y ti+1 es posible calcular Bi,0

con el siguiente código:

1 self.bases = (x >= self.grid[:,:-1]) * (x < self.grid[:, 1:])

Código 4.2: Código utilizado en la implementación propia de las redes KAN para calcular el caso
base de la fórmula recursiva Cox-de Boor, utilizado para el cálculo de las splines de la
red KAN

Como grid es un vector fila y x es un vector columna, todas las operaciones que hagamos
entre ellos nos darán todos los posibles resultados. Este código, por lo tanto, almacena en la
variable bases una matriz de tamaño m × (n − 1), de tal forma que el elemento i, j de la
matriz es igual a Bi,0(xj) = ti ≤ xj < ti+1. Podemos implementar de forma similar el caso
recursivo de Cox-de Boor, calculando ti, ti+1, ti+k y ti+k+1 a partir de grid y calculando
Bi,k−1 y Bi+1,k−1 a partir de los valores almacenados anteriormente en la variable bases.

Una vez calculados todas estas variables auxiliares, podemos fácilmente calcular el nuevo
valor de bases para el caso recursivo siguiendo la fórmula 3.8. Si ejecutamos el caso recursivo
k veces, entonces el valor de bases será igual al resultado de calcular cada una de las funciones
base de la spline para cada punto en x. Para implementar las divisiones de la fórmula Cox-de
Boor, se ha utilizado la función auxiliar zdiv().

1 self.bases = (x >= self.grid[:,:-1]) * (x < self.grid[:, 1:]) # caso base
2 for i in range(1, self.k+1) # caso recursivo
3 ti = self.grid[:, :-k-1] # [0:n-k-1]
4 ti1 = self.grid[:, 1:-k] # [1:n-k]
5 tik = self.grid[:, k:-1] # [k:n-1]
6 tik1 = self.grid[:, k+1:] # [k+1:n]
7 b0 = self.bases[:, :-1]
8 b1 = self.bases[:, 1:]
9 p0 = zdiv(x-ti, tik-ti) * b0

10 p1 = zdiv(tik1-x, tik1-ti1) * b1
11 self.bases = p0 + p1

Código 4.3: Código utilizado para el cálculo completo de las funciones base de las splines. El
código calcula de forma iterativa la fórmula de Cox-de Boor, utilizando un bucle para
calcular cada uno de los órdenes de la spline. Calcula también ciertas variables auxiliares
utilizadas para calcular las derivadas de las splines posteriormente

Lo único que nos queda es calcular las variables bases_d, s y s_d, que se puede hacer
aplicando las fórmulas 3.6, 3.8 y 3.10. El código completo se puede ver a continuación:
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1def spline(self, x):
2 self.bases = (x >= self.grid[:,:-1]) * (x < self.grid[:, 1:]) # caso base
3 for k in range(1, self.k+1): # caso recursivo
4 ti = self.grid[:, :-k-1] # [0:m-k-1]
5 ti1 = self.grid[:, 1:-k] # [1:m-k]
6 tik = self.grid[:, k:-1] # [k:m-1]
7 tik1 = self.grid[:, k+1:] # [k+1:m]
8 b0 = self.bases[:, :-1]
9 b1 = self.bases[:, 1:]

10 p0 = zdiv(x-ti,tik-ti) * b0
11 p1 = zdiv(tik1-x,tik1-ti1) * b1
12 self.bases = p0 + p1
13

14 # derivadas
15 b0_d = zdiv(k,tik-ti) * b0
16 b1_d = zdiv(k,tik1-ti1) * b1
17 self.bases_d = b0_d - b1_d
18

19 # valor spline
20 self.s = np.sum(self.coefs * self.bases, axis=1, keepdims=True)
21 self.s_d = np.sum(self.coefs * self.bases_d, axis=1, keepdims=True)

Código 4.4: Código completo del método spline() de la clase KANNeuron, responsable de calcular
todos los valores de splines de la clase. Incorpora el código visto anteriormente utilizado
para implementar la fórmula Cox-de Boor, y a partir de eso calcula las funciones base
(self.bases), las derivadas de las funciones base (self.bases_d), el valor de la spline (self.s)
y el valor de la derivada de la spline (self.s_d)

4.2.2 Método train()

El método train() actualiza los pesos de la neuronas (wb, ws y coefs) a partir de un vector
de deltas y de una tasa de aprendizaje (delta y lr).

Como se puede ver en la ecuación 3.27, para calcular el error de una neurona a partir
del vector de deltas correspondiente, tenemos la expresión ∂E/∂wl

b,i,j = δl+1
j bl(xli). Como el

valor de bl(xli) lo almacenamos en la variable self.b al realizar el feedforward de la red (en
el método __call__), podemos calcular el error de wb fácilmente a partir de la fórmula. Para
ajustar el valor de wb, calculamos el error y lo multiplicamos por lr, la tasa de entrenamiento.
Como cada valor de delta afecta de forma independiente a wb, aplicaremos la fórmula respecto
a la media del valor medio del vector delta. Sea avgDelta la variable que contiene el valor
medio de delta, nos queda el código self.wb -= lr * avgDelta * self.b.

De forma similar, podemos actualizar ws utilizando la fórmula ∂E/∂wl
S,i,j = δl+1

j S(xli).
Como S(xli) está ya almacenado en la variable self.s, obtenemos el código self.ws -= lr
* avgDelta * self.s.

Por último, para actualizar los coeficientes de la spline (almacenados en la variable coefs),
utilizaremos ∂E/∂αl

k,i,j = δl+1
j wl

S,i,jBk(x
l
i), también obtenido de la ecuación 3.27. No obstan-

te, a diferencia que para wb y ws, cada delta afecta de forma diferente a los valores de coefs,
ya que para cada coeficiente tenemos que multiplicarlo con el resultado de evaluar su función
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base de la spline (Bk(x
l
i) para el coeficiente αl

k,i,j). Es por esto que, para actualizar coefs,
es necesario utilizar el producto matricial (@ en Python). Como el resultado es una matriz,
pero necesitamos un vector, utilizaremos np.squeeze para eliminar la dimensión vacía de la
matriz. Podemos ver todo el código resultante en el código 4.5.

1def train(self, delta, lr):
2 avgDelta = np.mean(delta)
3 self.coefs -= np.squeeze(lr * self.ws * (delta.T @ self.bases))
4 self.wb -= np.sum(lr * avgDelta * self.b)
5 self.ws -= np.sum(lr * avgDelta * self.s)

Código 4.5: Código del método train() de la clase KANNeuron, responsable de actualizar todos los
coeficientes de la spline (self.coefs) y los pesos (self.wb y self.ws) a partir del vector de
deltas y de la learning rate recibida

Lo único que queda por explicar es que el código utilizado para actualizar wb y ws devuelve
un vector de numpy de un único elemento, aunque wb y ws son valores numéricos. Es por esto
que se ha añadido la función np.sum para convertir los vectores a valores numéricos.

4.2.3 Otros métodos
El resto de métodos de la clase KANNeuron son bastante simples. Es por eso que, en vez de
explicar todo el código de cada uno de estos métodos, se va a dar un pequeño resumen del
propósito de cada método en este apartado.

• Método __init__: Constructor de la clase, que inicializa todas las variables y comprue-
ba que la forma de grid y coefs es compatible.

• Método __call__: Overload del operador “()” para la clase. Al ejecutarse, calcula
todas las variables internas a partir del parámetro x, utilizando el método spline()
para realizar la mayoría de los cálculos relacionados con la spline de la neurona. Devuelve
el resultado de evaluar la neurona a partir de x.

• Método phi_d: calcula la derivada del valor de salida respecto a x, utilizando los valores
internos ya calculados por __call__ y spline. Este método es necesario en las siguientes
clases para implementar otros aspectos de la red.

4.2.4 Código completo
El código completo en Python de la clase KANNeuron se puede ver a continuación:

1class KANNeuron:
2 def __init__(self, grid, coefs, k, wb, ws):
3 self.k = k
4 self.wb = wb
5 self.ws = ws
6 self.coefs = coefs
7 self.grid = grid
8 self.min = np.min(grid)
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9 self.max = np.max(grid)
10 assert(grid.shape[1]-k-1 == self.coefs.shape[0])
11

12 def __call__(self, x):
13 self.x = np.clip(x, self.min, self.max) # clamp to fit grid
14 self.spline(self.x)
15 self.b = silu(self.x)
16 self.b_d = silu_d(self.x)
17 return self.wb * self.b + self.ws * self.s
18

19 def spline(self, x):
20 self.bases = (x >= self.grid[:,:-1]) * (x < self.grid[:, 1:]) # k = 0
21 for k in range(1, self.k+1):
22 ti = self.grid[:, :-k-1] # [0:m-k-1]
23 ti1 = self.grid[:, 1:-k] # [1:m-k]
24 tik = self.grid[:, k:-1] # [k:m-1]
25 tik1 = self.grid[:, k+1:] # [k+1:m]
26 b0 = self.bases[:, :-1]
27 b1 = self.bases[:, 1:]
28 p0 = zdiv(x-ti,tik-ti) * b0
29 p1 = zdiv(tik1-x,tik1-ti1) * b1
30 self.bases = p0 + p1
31

32 p0_d = zdiv(k,tik-ti) * b0
33 p1_d = zdiv(k,tik1-ti1) * b1
34 self.bases_d = p0_d - p1_d
35 self.s = np.sum(self.coefs * self.bases, axis=1, keepdims=True)
36 self.s_d = np.sum(self.coefs * self.bases_d, axis=1, keepdims=True)
37

38 def phi_d(self):
39 return self.wb * self.b_d + self.ws * self.s_d
40

41 def train(self, delta, lr):
42 avgDelta = np.mean(delta)
43 self.coefs -= np.squeeze(lr * self.ws * (delta.T @ self.bases))
44 self.wb -= np.sum(lr * avgDelta * self.b)
45 self.ws -= np.sum(lr * avgDelta * self.s)

Código 4.6: Código completo de la clase KANNeuron utilizada en la implementación propia de las
redes KAN

4.3 Clase KANLayer

La siguiente clase de la implementación es la clase KANLayer, que representa una capa densa
KAN de una red. Las variables de la clase son las siguientes:

• nIn: número de entradas de la capa

• nOut: número de salidas de la capa
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• xavier: valor calculado a partir de nIn y nOut utilizado para realizar Xavier iniciali-
zation [69], que es un método para inicializar los pesos de la red de forma aleatoria

• grid: la grid de todas las neuronas de la capa. Utilizado en la inicialización

• k: el grado de las splines de las neuronas de la capa. Utilizado en la inicialización

• n: número de coeficientes para cada neurona de la capa. Utilizado en la inicialización

• neurons: matriz nin × nout de objetos KANNeuron, que almacena todas las neuronas de
la capa

• activations: las activaciones de todas las neuronas de la red. Se actualiza automáti-
camente cada vez que se llama al método __call__

4.3.1 Método __call__()
El método __call__ es responsable de evaluar todas las neuronas de la capa para una con-
junto de valores de entrada x. Primero, el método comprueba que la matriz x contiene la
cantidad de entradas necesaria para poder ejecutar la capa (nIn). A partir de esto, calcula-
mos el valor de activations para el valor del parámetro x, llamando al método __call__
de cada una de las KANNeuron de neurons pasándole la entrada correspondiente de x.

Una vez calculado activations, sumamos todos los valores que corresponden a la misma
salida, y comprobamos que el resultado tiene las dimensiones correctas respecto a x y que
tiene la cantidad necesaria de valores de salida (nOut).

1def __call__(self, x):
2 assert(x.shape[-1] == self.nIn)
3 self.activations = np.array([[self.neurons[i, j](x[:,[i]])
4 for j in range(self.nOut)] for i in range(self.nIn)])
5 result = np.squeeze(np.sum(self.activations, axis=0).T)
6 assert(result.shape[1] == self.nOut)
7 assert(result.shape[0] == x.shape[0])
8 return result

Código 4.7: Código del método __call__() de la clase KANLayer, que calcula el resultado de una
capa KAN. Calcula los resultados parciales de todos los objetos KANNeuron internos
a la capa KAN, y devuelve el resultado correspondiente. También comprueba que las
dimensiones de los datos de entrada y de salida producidos son correctas, utilizando el
método assert() de Python.

4.3.2 Método train()
El método train de la clase KANLayer es responsable de calcular a partir de los deltas recibi-
dos de la capa siguiente calcular los deltas de entrada de la capa anterior en la red. También
llama al método train de todas las neuronas de neurons con los deltas correspondientes,
actualizando así los parámetros de todas las neuronas de la capa.

Primero es necesario asegurar que el parámetro delta tiene dimensiones compatibles, com-
probando que coincide con la cantidad de salidas de la capa. A partir de esto, se almacena en
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product el resultado de multiplicar el delta correspondiente con la derivada de cada neurona,
tal y como se especifica en la ecuación 3.27. Entonces, sumamos los valores de product y al-
macenamos los nuevos deltas en la variable result. Por último, comprobamos que los nuevos
deltas tienen las dimensiones esperadas, y llamamos al método train de todas las neuronas
en neurons con el delta correspondiente.

1def train(self, deltas, lr):
2 assert(deltas.shape[1] == self.nOut)
3 product = np.array([[np.expand_dims(deltas[:,j], 1) * self.neurons[i, j].←↩

↪→ phi_d() for j in range(self.nOut)] for i in range(self.nIn)]).T
4 result = np.squeeze(np.sum(product.T, axis=1).T)
5 assert(result.shape[1] == self.nIn)
6 assert(result.shape[0] == deltas.shape[0])
7

8 for j in range(self.nOut):
9 for i in range(self.nIn):

10 self.neurons[i, j].train(np.expand_dims(deltas[:,j], 1), lr)
11

12 return result

Código 4.8: Código del método train() de la clase KANLayer, que actualiza todos los pesos de la capa
KAN dados los deltas y la learning rate llamando al método train de todos los objetos
KANNeuron internos. Además, calcula y devuelve los deltas de la capa anterior de la
red para poder realizar backpropagation utilizando el resultado devuelto por la función,
comprobando que las dimensiones de los deltas de entrada y salida son correctas.

4.3.3 Otros métodos
El resto de métodos de la clase KANLayer son los siguientes:

• Método initNeuron: método que inicializa una neurona mediante Xavier inicialization,
utilizando el valor self.xavier calculado en __init__. Devuelve el objeto KANNeuron
que se ha creado e inicializado.

• Método __init__: Constructor de la clase, que inicializa todas las variables y llama
múltiples veces a initNeuron y guarda el resultado en la matriz neurons.

4.3.4 Código completo
El código completo de la clase KANLayer es el siguiente:

1class KANLayer:
2 def initNeuron(self):
3 coefs = norm.rvs(scale=0.01, size=self.n)
4 aw = norm.rvs(scale=self.xavier, size=1) # Xavier initialization
5 return KANNeuron(self.grid, coefs, self.k, aw, 1)
6

7 def __init__(self, nIn, nOut, grid, k=3):
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8 self.nIn = nIn
9 self.nOut = nOut

10 self.xavier = math.sqrt(2 / (nIn + nOut))
11 self.grid = grid
12 self.k = k
13 self.n = grid.shape[1] - k - 1
14 self.neurons = np.array([[self.initNeuron() for j in range(nOut)] for i ←↩

↪→ in range(nIn)])
15

16 def __call__(self, x):
17 assert(x.shape[-1] == self.nIn)
18 self.activations = np.array([[self.neurons[i,j](x[:,[i]])
19 for j in range(self.nOut)] for i in range(self.nIn)])
20 result = np.squeeze(np.sum(self.activations, axis=0).T)
21 assert(result.shape[1] == self.nOut)
22 assert(result.shape[0] == x.shape[0])
23 return result
24

25 def train(self, deltas, lr):
26 assert(deltas.shape[1] == self.nOut)
27 product = np.array([[np.expand_dims(deltas[:, j], 1)
28 * self.neurons[i, j].phi_d()
29 for j in range(self.nOut)] for i in range(self.nIn)]).T
30 result = np.squeeze(np.sum(product.T, axis=1).T)
31 assert(result.shape[1] == self.nIn)
32 assert(result.shape[0] == deltas.shape[0])
33

34 for j in range(self.nOut):
35 for i in range(self.nIn):
36 self.neurons[i, j].train(np.expand_dims(deltas[:,j], 1), lr)
37

38 return result

Código 4.9: Código completo de la clase KANLayer utilizada en la implementación propia de las
redes KAN.

4.4 Clase KAN
La clase KAN es la clase más simple de la implementación, ya que la mayoría de su funcionalidad
es llamar a las funciones de las clase KANLayer. La clase KAN es una red KAN completa,
incluyendo un método para evaluar la red y otro para entrenarla ajustando sus pesos. Tiene
los siguientes métodos:

• Método __init__: inicializa la red, utilizando una lista que codifica la cantidad de
entradas y salidas de cada capa. El elemento i es la cantidad de entradas de la capa i,
mientras que el elemento i+1 es la cantidad de salidas. A partir de esta lista, se crean
todos los objetos KANLayer y se almacenan en la variable layers.

• Método __call__: calcula el valor de la red para unos datos de entrada x, pasando los
datos por todas las capas. Devuelve el resultado obtenido.
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• Método train: utilizando el último valor de self.x, calcula los deltas de la última
capa, y va llamando al método train de todas las capas en orden inverso para realizar
backpropagation.

El código completo de la clase KAN se puede ver a continuación:

1class KAN:
2 def __init__(self, l, grid, k=3):
3 self.layers = []
4 for i in range(len(l)-1):
5 self.layers.append(KANLayer(l[i], l[i+1], grid, k))
6

7 def __call__(self, x):
8 self.x = x
9 for layer in self.layers:

10 self.x = layer(self.x)
11 return self.x
12

13 def train(self, y, lr):
14 deltas = 2*(y - self.x)
15 for layer in reversed(self.layers):
16 deltas = layer.train(deltas, lr)

Código 4.10: Código completo de la clase KAN utilizada en la implementación propia de redes KAN.



5 Experimentos

En este capítulo realizamos varios experimentos con el fin de verificar algunas de las pro-
piedades de las redes KAN, y de compararlas con las redes tradicionales. Dada la falta de
experimentos respecto al tema, se ha decidido realizar experimentos para medir el rendi-
miento, eficiencia y otros aspectos de las redes convolucionales KAN. Además, como las redes
convolucionales son una clase de red fundamental para muchas aplicaciones, especialmente
para el procesamiento de datos estructurados (imágenes, audio, etc.), comparar las redes con-
volucionales tradicionales y las redes convolucionales KAN nos podrá dar una pista de si las
redes KAN se podrían utilizar para mejorar las redes convolucionales actuales.

Para todos los experimentos realizados en este apartado se ha utilizado el framework
pytorch [70] para definir, entrenar y evaluar los modelos. Todos los resultados obtenidos en
los experimentos se han obtenido a partir de modelos entrenados con el optimizador AdamW
[71], configurado utilizando λ (weight decay) = 0.0001 y lr (learning rate) = 0.01. Además,
se ha empleado el scheduler ExponentialLR [72] para reducir la learning rate del optimizador
dependiendo de la época de entrenamiento, con γ (gamma) = 0.9. Todos los modelos se han
entrenado durante 20 épocas utilizando esta configuración, siendo entrenados únicamente con
las muestras del conjunto de datos de entrenamiento correspondiente al experimento. Para
obtener los resultados tras el entrenamiento se ha medido la tasa de aciertos y la f-score de
los modelos obtenidos con el conjunto de evaluación del experimento.

5.1 Conjuntos de datos utilizados

Para evaluar el rendimiento de redes convolucionales, existen muchos conjunto de datos es-
tandarizados, cada uno con sus ventajas e inconvenientes [73]. Para este trabajo se ha decidido
utilizar los datasets MNIST y CIFAR-10. Se han elegido estos conjuntos de datos no solo por
su amplio uso a la hora de medir el rendimiento de modelos y arquitecturas de clasificación de
imágenes, sino también por su reducido coste computacional necesario para entrenar modelos
con estos datasets y medir su rendimiento.

5.1.1 MNIST

MNIST es un conjunto de datos estándar utilizado para comprobar la eficacia de arquitecturas
en tareas de clasificación de imágenes [74]. El dataset está formado por imágenes de 28× 28
en blanco y negro, representando cada una un dígito del 0 al 9. En la figura 5.1 podemos ver
algunos ejemplos de imágenes del conjunto de datos.

53
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Figura 5.1: Muestras de imágenes de cada una de las 10 clases del dataset MNIST. Fuente: elabora-
ción propia

MNIST contiene 60000 imágenes de 28 × 28 píxeles con su correspondiente dígito (0 − 9),
teniendo exactamente 6000 muestras para cada una de sus 10 clases. Utilizaremos 50000 de
estas muestras para entrenar los modelos, y las 10000 restantes para evaluar los resultados
de los modelos producidos por el proceso de entrenamiento.

Las imágenes de MNIST se han normalizado respecto a la media y la varianza de los valores
de los píxeles de las muestras del conjunto de entrenamiento, de forma de que la distribución
de los valores de los píxeles del conjunto de entrenamiento tenga media 0 y varianza 1. Se
ha normalizado utilizando 0.1307 para la media y 0.3081 para la varianza. A parte de esta
normalización, no se ha aplicado ningún otro pre-procesado a las imágenes de MNIST.

5.1.2 CIFAR-10
CIFAR-10 es otro conjunto de datos frecuentemente utilizado en tareas de clasificación de
imágenes, para medir la eficiencia de modelos de una forma estándar [75]. Al igual que
MNIST, está formados por una gran cantidad de muestras de imágenes agrupadas en 10 clases.
Estas clases son airplane (aviones), automobile (coches), bird (pájaros), cat (gatos), deer
(ciervos), dog (perros), frog (ranas), horse (caballos), ship (barcos) y truck (camiones). En
la figura 5.2 podemos ver algunos ejemplos de imágenes del conjunto de datos. Las imágenes
de CIFAR-10 son imágenes a color que contienen 32 × 32 píxeles. Como cada uno de los
canales de las imágenes solo puede ir de 0 a 255, las imágenes están codificadas en RGB-8.

Figura 5.2: Muestras de imágenes de cada una de las 10 clases del dataset CIFAR-10, incluyendo (de
izquierda a derecha) imágenes de aviones, coches, pájaros, gatos, ciervos, perros, ranas,
caballos, barcos y camiones, que son las 10 clases de imágenes del conjunto de datos.
Fuente: elaboración propia

El conjunto de datos CIFAR-10 contiene 60000 imágenes con 32 × 32 × 3 valores cada una,
además de su clase correspondiente. Al igual que para MNIST, se ha dividido el dataset en
dos, dejando 50000 muestras para el conjunto de entrenamiento y 10000 para el de evaluación.

Las imágenes de CIFAR-10 también se han normalizado, para que la distribución de los
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valores de los píxeles tenga media 0 y varianza 1. Como cada píxel tiene 3 valores (ya que las
imágenes son RGB), tenemos que normalizar cada uno de los 3 canales de las imágenes por
separado. Se han utilizado los valores 0.4914, 0.4822 y 0.4465 para normalizar respecto a la
media; y 0.2023, 0.1994 y 0.2010 para normalizar respecto a la varianza. No se ha aplicado
ningún otro procesamiento a las imágenes del dataset.

5.2 Arquitecturas utilizadas

Dado que MNIST y CIFAR-10 son conjuntos de datos formado por imágenes, se han utili-
zado arquitecturas con capas convolucionales bidimensionales, con el fin de que los modelos
aprendan de forma efectiva la estructura de los datos del dataset (ver apartado 2.3.2 para
más información). Utilizaremos capas convolucionales bidimensionales tanto para las redes
convolucionales tradicionales como para redes KAN.

5.2.1 Redes CNN

Para las redes tradicionales, hemos utilizado una red neuronal convolucional, o CNN. La
arquitectura utilizada contiene dos capas convolucionales, que se han implementado utilizado
la clase Conv2D [76] de Pytorch. La salida de cada una de estas capas convolucionales se pasa
por una función de activación ReLU. Después de pasar el resultado de cada capa por la función
de activación, la salida de las capas convolucionales se pasa también por un MaxPool2D de
tamaño 2 × 2, con el fin de mejorar la generalización del modelo y a la vez de reducir la
cantidad de parámetros de las siguientes capas. Después de realizar todo esto para las dos
capas convolucionales, se aplanan los datos y se pasan por una capa densa. A esta capa densa
la sigue, al igual que a las capas convolucionales, una función de activación ReLU. Las capas
densas utilizan la clase Linear [77] de Pytorch.

Con el fin de combatir y reducir el overfitting del modelo durante el proceso de entrena-
miento, se ha añadido una capa de Dropout después de la primera capa densa. Esta capa
anula un porcentaje de las entradas recibidas de forma aleatoria durante el entrenamiento,
haciendo que todos los valores anulados sean 0. De esta forma, la red no depende tanto de
la memorización de una única configuración de valores, ya que en algunos casos la red no
podrá depender de que estos valores no sean anulados. Esto, si se utiliza correctamente, puede
aumentar significativamente la capacidad de generalización del modelo. Se ha utilizado una
capa con 50% Dropout, que significa que durante el entrenamiento, cada entrada tiene cada
vez un 50% de probabilidad de ser anulada.

Después del Dropout, se ha utilizado una segunda capa densa, aunque sin función de acti-
vación. De esta forma, no se limitan las posibles salidas del modelo a un rango determinado.
En la figura 5.3 se puede ver una representación gráfica de la estructura completa de los
modelos CNN utlizados en los experimentos.
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Datos de entrada

Conv2D + ReLU

MaxPool2D

Conv2D + ReLU

MaxPool2D

Linear + ReLU

Dropout (50%)

Linear

Salidas del modelo (10)

Figura 5.3: Estructura de las redes CNN utilizadas en los experimentos, con las partes entrenables
del modelo en azul y la entrada/salida de datos en naranja. El modelo es una red convo-
lucional bastante estándar, con dos capas convolucionales, dos capas densas, funciones
de activación ReLU, Max Pooling y una capa de Dropout. Fuente: elaboración propia

Los modelos CNN, como se puede deducir a partir de la arquitectura utilizada, tienen 3
parámetros configurables: la cantidad de filtros de salida de la primera capa convolucional, la
cantidad de filtros de salida de la segunda capa convolucional, y la cantidad de neuronas de
salida de la primera capa densa. El resto de los parámetros de las capas no son configurables,
ya que tienen que tener ciertos valores para que la arquitectura concuerde con los datos de
entrada recibidos y para que la red produzca los datos de salida esperados.

5.2.2 Redes Conv-KAN
Para las redes KAN, se ha empleado una estructura muy similar a la de las redes CNN,
utilizando capas convolucionales KAN para sustituir las capas convolucionales y capas KAN
densas para sustituir las capas densas tradicionales. Se ha utilizado la capa FastKANLayer
[43] para las capas KAN densas, y ConvKAN [40] para las capas convolucionales KAN. Cabe
notar que la capa FastKANLayer, con el fin de calcular los resultados más rápidamente,
utiliza una aproximación de las funciones base de splines, basada en el uso de funciones base
radiales gaussianas [78]. Aunque este proceso no produce exactamente los mismos resultados,
obtiene resultados prácticamente idénticos con un speedup de 3.33 sobre una implementación
que no utilice esta aproximación [79]. Para las redes convolucionales, no se ha encontrado
una implementación que utilice funciones base radiales para aproximar las funciones KAN,
así que se ha utilizado una capa con las funciones KAN sin esta optimización.

Aunque se ha intentado diseñar una estructura lo más similar posible a la estructura
utilizada para las redes CNN, siguen habiendo algunas diferencias notables entre las dos
arquitecturas. La principal es que, como se están utilizando capas densas y convolucionales
KAN, no es necesario (ni útil) utilizar funciones de activación tras las capas KAN. Es por
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esto que no se ha utilizado ninguna función de activación, ya que las no-linealidades de las
capas KAN deberían ser suficiente para que la red pueda ser capaz de aproximar cualquier
función.

Otra diferencia mayor es que se ha quitado la capa Dropout. Al principio se probó a
utilizarla, pero rápidamente fue descubierto que las capas KAN densas no pueden combinarse
correctamente con capas Dropout. Esto es posible que se deba a la estructura interna de las
capas KAN, y que haga que este tipo de redes no sean muy permisivas a la pérdida de parte
de la información [80].

La última diferencia es que, aunque se ha sustituido la primera capa densa por una capa
KAN, la segunda se ha dejado como una capa densa tradicional. Esto es por que, si nos fijamos
en la estructura utilizada para las capas CNN, la segunda capa densa no tiene función de
activación. Como nuestro objetivo es crear dos arquitecturas similares, cambiar la segunda
capa densa por una capa KAN es equivalente a introducir una función de activación a las
segunda capa densa, que no se suele hacer en el contexto de las redes convolucionales. Es por
esto que, para que la arquitectura sea lo más similar posible, se ha dejado la segunda capa
densa como una capa densa tradicional.

En la figura 5.4 se puede ver una representación gráfica de la estructura completa de los
modelos Conv-KAN utilizados en los experimentos.

Datos de entrada

ConvKAN

MaxPool2D

ConvKAN

MaxPool2D

FastKANLayer

Linear

Salidas del modelo (10)

Figura 5.4: Estructura de las redes Conv-KAN utilizadas en los experimentos, con las partes entre-
nables en azul y la entrada/salida en naranja. Es una adaptación de la estructura de la
figura 5.3 para el uso de capas KAN, necesitando la eliminación de la capa dropout y de
las funciones de activación. Fuente: Elaboración propia

Al igual que con modelos CNN, los modelos Conv-KAN producidos por la arquitectura des-
crita anteriormente tendrán 3 parámetros configurables: la cantidad de filtros de salida de la
primera capa convolucional, la cantidad de filtros de salida de la segunda capa convolucional,
y la cantidad de neuronas de salida de la primera capa densa.
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5.3 Eficiencia respecto al número de parámetros

En esta sección mediremos los resultados obtenidos en redes KAN y redes convoluciona-
les tradicionales respecto al número de parámetros. Para esto, entrenaremos varios modelos
ConvKAN y CNN, y estudiaremos cuál arquitectura produce mejores resultados para cada
número de parámetros del modelo.

Se han elegido 5 modelos Conv-KAN y 5 modelos CNN de varios tamaños, intentando que
cada uno de los modelos KAN tenga una cantidad comparable de parámetros que el modelo
CNN correspondiente. Los modelos entrenados para realizar este experimento se pueden ver
en la tabla 5.1.

Arquitectura Modelo C1 C2 D
Parámetros totales

MNIST CIFAR-10
CKAN8 8 8 8 21378 29330
CKAN12 12 12 12 47182 63862

Conv-KAN CKAN16 16 16 16 83066 111642
CKAN20 20 20 20 129030 172670
CKAN24 24 24 24 185074 246946
CNN10 10 20 40 22370 31350
CNN15 15 30 60 49900 69970

CNN CNN20 20 40 80 88330 123890
CNN25 25 50 100 137660 193110
CNN30 30 60 120 197890 277630

Tabla 5.1: Arquitecturas Conv-KAN y CNN entrenadas para realizar el experimento de eficiencia
de parámetros, siendo C1 la cantidad de filtros de la primera capa convolucional, C2 la
cantidad de filtros de la segunda capa convolucional y D la cantidad de neuronas de
la primera capa densa. Las capas convolucionales y densas de los modelos Conv-KAN
utilizan los valores predeterminados para el tamaño de grid, utilizando todas una grid
uniforme. Los modelos tienen cantidades diferentes de parámetros para MNIST que para
CIFAR-10, ya que las imágenes de MNIST son de distinto tamaño que las de CIFAR-10,
y las imágenes de CIFAR-10 son en color RGB mientras que las de MNIST son en blanco
y negro. Fuente: elaboración propia

5.3.1 MNIST

Los resultados obtenidos tras entrenar los modelos descritos anteriormente para el dataset
MNIST se pueden ver en la tabla 5.2. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.5.
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Modelo Parámetros totales Tasa de aciertos F-score
CKAN8 21378 98.9% 98.8%
CKAN12 47182 99.1% 99.1%
CKAN16 83066 99.1% 99.1%
CKAN20 129030 99.1% 99.1%
CKAN24 185074 99.2% 99.2%
CNN10 22370 99.1% 99.1%
CNN15 49900 99.3% 99.2%
CNN20 88330 99.3% 99.3%
CNN25 137660 99.4% 99.4%
CNN30 197890 99.4% 99.4%

Tabla 5.2: Resultados obtenidos para el dataset MNIST en el experimento de eficiencia respecto al
número de parámetros tras entrenar los modelos descritos en la tabla 5.1. Los mejores
resultados en términos de tasa de aciertos y de F-score están en negrita. Fuente: elabora-
ción propia

(a) Resultados en términos de tasa de aciertos (b) Resultados en términos de f-score

Figura 5.5: Resultados del experimento de eficiencia respecto al número de parámetros para el da-
taset MNIST, en términos de tasa de aciertos (a) y f-score (b) frente al número de
parámetros de los modelos entrenados de las arquitecturas CNN y Conv-KAN. Fuente:
elaboración propia

5.3.2 CIFAR-10

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.1 para el dataset
CIFAR-10 se pueden ver en la tabla 5.3. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.6.
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Modelo Parámetros totales Tasa de aciertos F-score
CKAN8 29330 59.4% 59.1%
CKAN12 63862 64.0% 64.0%
CKAN16 111642 65.7% 65.5%
CKAN20 172670 67.2% 67.2%
CKAN24 246946 67.0% 66.9%
CNN10 31350 60.7% 60.5%
CNN15 69970 67.3% 66.9%
CNN20 123890 70.8% 70.6%
CNN25 193110 71.8% 71.9%
CNN30 277630 73.3% 73.2%

Tabla 5.3: Resultados obtenidos para el dataset CIFAR-10 en el experimento de eficiencia respecto
al número de parámetros tras entrenar los modelos descritos en la tabla 5.1. Los mejores
resultados en términos de tasa de aciertos y de F-score están en negrita. Fuente: elabora-
ción propia

(a) Resultados en términos de tasa de aciertos (b) Resultados en términos de f-score

Figura 5.6: Resultados del experimento de eficiencia respecto al número de parámetros para el da-
taset CIFAR-10, en términos de tasa de aciertos (a) y f-score (b) frente al número de
parámetros de los modelos entrenados de las arquitecturas CNN y Conv-KAN. Fuente:
elaboración propia

5.3.3 Resultados
Como se ha podido ver en los resultados anteriores, las redes KAN son menos eficientes en
términos de parámetros que las redes convolucionales tradicionales. Esta deficiencia ocurre
en todos los conjuntos de datos probados, y es bastante significativa, obteniendo las redes
convolucionales KAN un rendimiento consistentemente menor que las redes CNN para un
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número similar de parámetros, tanto en términos de tasa de aciertos como en términos de
f-score.

Esto se debe, principalmente, a la gran cantidad de parámetros que necesitan las redes
KAN para definir las capas densas, ya que las redes KAN necesitan mayor cantidad de
parámetros para cada neurona. En una red tradicional, una capa densa de N entradas y
M salidas necesitará O(nm) parámetros. No obstante, en un capa KAN, una capa densa
necesitará una cantidad de parámetros proporcional a la cantidad de nodos de la grid g,
por lo que esta capa necesitará O(nmg) parámetros. Aunque el valor g no suele ser sea
demasiado alto (generalmente está entre 4 y 32), esto sigue significando que las redes KAN
suelen utilizar mucho más parámetros para la misma arquitectura que la red tradicional
equivalente. Es por esto que, para compararlas en términos de parámetros, se ha tenido que
reducir la arquitectura de las redes KAN (especialmente en la capa lineal), además de utilizar
un tamaño de grid bastante reducido (4), cosa que ha empeorado bastante el rendimiento de
los modelos utilizados en este experimento.

5.4 Eficiencia respecto al número de datos de entrenamiento

Como ya se ha explicado en el apartado 2.5.4.2, a la hora de entrenar modelos de machine
learning es preferible utilizar arquitecturas y modelos que necesiten una menor cantidad de
datos de entrenamiento para obtener resultados buenos. Para intentar medir esta propiedad,
entrenaremos los modelos utilizando únicamente una fracción de los datos de entrenamiento
del los conjuntos de datos y estudiaremos los resultados obtenidos. Como cada modelo ha de
ser entrenado varias veces, solo realizaremos el experimento con 2 modelos CNN y 2 modelos
Conv-KAN. Estos modelos están descritos en la tabla 5.4.

Arquitectura Modelo C1 C2 D

Conv-KAN
CKAN8 8 16 32
CKAN16 16 32 64

CNN
CNN8 8 16 32
CNN16 16 32 64

Tabla 5.4: Arquitecturas Conv-KAN y CNN entrenadas para realizar el experimento de eficiencia de
datos de entrenamiento, siendo C1 la cantidad de filtros de la primera capa convolucional,
C2 la cantidad de filtros de la segunda capa convolucional, y D la cantidad de neuronas
de la primera capa densa. Fuente: elaboración propia

Para cada modelo de la tabla anterior, se va a entrenar el modelo utilizando 5, 10, 25, 50,
75 o 100% de los datos de entrenamiento totales. Para cada uno de estos entrenamientos,
se medirá el rendimiento obtenido tras el entrenamiento en términos de tasa de aciertos y
de f-score, con el fin de medir cuál arquitectura es más eficiente en términos de datos de
entrenamiento.
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5.4.1 MNIST

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.4 para el dataset
MNIST se pueden ver en la tabla 5.5. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.7.

Modelo Métrica
Datos de entrenamiento utilizados (%)

5% 10% 25% 50% 75% 100%

CKAN8
Tasa de aciertos 96.3% 97.3% 98.5% 98.7% 99.0% 98.9%
F-score 96.3% 97.2% 98.5% 98.7% 99.0% 98.9%

CKAN16
Tasa de aciertos 96.6% 97.7% 98.6% 98.9% 99.0% 99.2%
F-score 96.5% 97.7% 98.6% 98.9% 99.0% 99.2%

CNN8
Tasa de aciertos 95.1% 96.4% 97.4% 98.2% 98.4% 98.7%
F-score 95.0% 96.4% 97.4% 98.2% 98.4% 98.7%

CNN16
Tasa de aciertos 96.4% 97.6% 98.8% 98.8% 99.1% 99.1%
F-score 96.4% 97.5% 98.7% 98.8% 99.1% 99.1%

Tabla 5.5: Resultados obtenidos para el dataset MNIST en el experimento de eficiencia respecto al
número de datos de entrenamiento, tras entrenar los modelos descritos en la tabla 5.4 con
un 5, 10, 25, 50, 75 y 100% de las muestras del conjunto de datos de entrenamiento. Los
mejores resultados en términos de tasa de aciertos y f-score para cada porcentaje de datos
de entrenamiento se han resaltado en negrita. Fuente: elaboración propia

(a) Resultados en términos de tasa de aciertos (b) Resultados en términos de f-score

Figura 5.7: Resultados obtenidos para el dataset MNIST en el experimento de eficiencia respecto a la
cantidad de datos de entrenamiento, mostrando el rendimiento de los modelos obtenidos
en términos de tasa de aciertos (a) y f-score (b) frente al porcentaje de datos utilizado
durante el entrenamiento. Fuente: elaboración propia
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5.4.2 CIFAR-10

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.4 para el dataset
CIFAR-10 se pueden ver en la tabla 5.6. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.8.

Modelo Métrica
Datos de entrenamiento utilizados (%)

5% 10% 25% 50% 75% 100%

CKAN8
Tasa de aciertos 41.4% 47.7% 53.7% 58.5% 61.3% 62.5%
F-score 41.2% 47.2% 53.6% 57.9% 61.3% 62.3%

CKAN16
Tasa de aciertos 42.2% 49.0% 55.2% 61.3% 65.2% 64.8%
F-score 41.7% 48.5% 55.1% 61.5% 65.2% 64.7%

CNN8
Tasa de aciertos 41.5% 43.6% 49.9% 54.4% 56.2% 59.2%
F-score 39.1% 41.6% 48.9% 53.9% 55.5% 58.7%

CNN16
Tasa de aciertos 44.9% 51.4% 60.4% 64.1% 65.9% 67.7%
F-score 44.0% 50.2% 59.9% 63.9% 65.7% 67.6%

Tabla 5.6: Resultados obtenidos para el dataset CIFAR-10 en el experimento de eficiencia respecto
al número de datos de entrenamiento, tras entrenar los modelos descritos en la tabla 5.4
con un 5, 10, 25, 50, 75 y 100% de las muestras del conjunto de datos de entrenamiento.
Los mejores resultados en términos de tasa de aciertos y f-score para cada porcentaje de
datos de entrenamiento se han resaltado en negrita. Fuente: elaboración propia

(a) Resultados en términos de tasa de aciertos (b) Resultados en términos de f-score

Figura 5.8: Resultados obtenidos para el dataset CIFAR-10 en el experimento de eficiencia respec-
to a la cantidad de datos de entrenamiento, mostrando el rendimiento de los modelos
obtenidos en términos de tasa de aciertos (a) y f-score (b) frente al porcentaje de datos
utilizado durante el entrenamiento. Fuente: elaboración propia
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5.4.3 Resultados

Como se puede ver en la tabla 5.5, en algunos casos para el dataset MNIST las redes con-
volucionales KAN obtienen un mejor rendimiento que las redes convolucionales tradicionales
dada la misma fracción del conjunto de datos de entrenamiento del dataset MNIST. No obs-
tante, aunque en algunos casos se haya obtenido un rendimiento mayor, los resultados entre
los modelos CKAN16 y CNN16 son tan similares que no se puede concluir con certeza que las
redes convolucionales tengan un mayor rendimiento para el dataset MNIST en términos de
eficiencia de datos de entrenamiento para ninguna de las fracciones de datos comprobadas.
La única cosa que se observa de forma clara es que el modelo CNN8 obtiene resultados signi-
ficativamente peores que el resto de modelos, incluyendo el modelo CKAN8, cosa que puede
indicar que las redes convolucionales KAN tengan una mayor eficiencia en términos de datos
de entrenamiento para modelos de menor tamaño.

En los resultados para CIFAR-10, podemos ver que aunque los modelos CKAN16 y CKAN8
obtienen resultados bastante mejores que el modelo CNN8, el modelo CNN16 obtiene un
mayor rendimiento que ambos modelos Conv-KAN para todas las fracciones de datos de
entrenamiento comprobadas. Aunque es posible que las redes KAN obtengan resultados con
mayor rendimiento para modelos reducidos, este resultado indica claramente que la ventaja
que existe no necesariamente se generaliza a modelos de mayor tamaño, hasta el punto de
que las redes convolucionales tradicionales parecen tener mejor rendimiento que las redes
convolucionales KAN para modelos de mayor tamaño.

5.5 Calibración
La calibración de un modelo indica la correlación entre la confianza producida por un modelo
y la probabilidad real de que una muestra sea correcta (ver apartado 2.5.5) para más detalles.
Dado que obtener modelos con buena calibración puede ser muy importante dependiendo de
la aplicación del caso de uso del modelo, vamos a medir la calibración de modelos de arquitec-
turas Conv-KAN y compararla con la calibración obtenida por los modelos convolucionales
tradicionales. Se medirá la calibración de los modelos descritos en la tabla 5.7.

Arquitectura Modelo C1 C2 D

Conv-KAN
CKAN8 8 16 32
CKAN16 16 32 64

CNN
CNN8 8 16 32
CNN16 16 32 64

Tabla 5.7: Arquitecturas Conv-KAN y CNN entrenadas para realizar el experimento de calibración,
siendo C1 la cantidad de filtros de la primera capa convolucional, C2 la cantidad de filtros
de la segunda capa convolucional, y D la cantidad de neuronas de la primera capa densa.
Fuente: elaboración propia

Para cada uno de los 4 modelos de la tabla 5.7, mediremos la calibración obtenida tras el
entrenamiento, utilizando tanto el Error de Calibración Esperado (ECE) como la tasa de
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aciertos respecto al intervalo de confianza (ver apartados 2.5.5.1 y 2.5.5.2). Para medir y
calcular ambas métricas se han dividido las muestras de los conjuntos de datos de evaluación
en 5 grupos uniformes en función de la confianza predecida por el modelo para cada muestra,
de forma que se han agrupado las muestras en los grupos de 0 − 20%, 20 − 40%, 40 − 60%,
60− 80% y 80− 100% en función de su confianza.

5.5.1 MNIST

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.1 para el dataset
MNIST se pueden ver en la tabla 5.2. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.5.

Modelo ECE
Tasa de aciertos respecto al intervalo de confianza

0− 20% 20− 40% 40− 60% 60− 80% 80− 100%
CKAN8 0.70% — — 40.0% 53.7% 99.3%
CKAN16 0.51% — 0.0% 47.4% 55.8% 99.5%
CNN8 0.39% — 25.0% 41.4% 62.9% 99.5%
CNN16 0.44% — 0.0% 61.4% 51.2% 99.5%

Tabla 5.8: Resultados obtenidos en el experimento de calibración para el dataset MNIST, mostrando
el ECE obtenido de cada modelo junto con la tasa de aciertos obtenida respecto a la
probabilidad predecida media. Para el cálculo del ECE y de la tasa de aciertos respecto
a la confianza se han agrupado las muestras en 5 grupos, con intervalos de confianzas
0− 20%, 20− 40%, 40− 60%, 60− 80% y 80− 100%. Las celdas vacías de la tabla indican
que no hay ninguna muestra en su intervalo de confianza para el modelo correspondiente.
Fuente: elaboración propia
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(a) Curvas de calibración (b) Cantidad de muestras

Figura 5.9: Gráficas que visualizan los resultados del experimento de calibración para el dataset
MNIST, mostrando las curvas de calibración obtenidas para cada modelo junto con la
cantidad de muestras que pertenecen a cada intervalo, tras agrupar las muestras en 5
grupos, con intervalos de confianzas 0−20%, 20−40%, 40−60%, 60−80% y 80−100%.
En la gráfica de curvas de calibración también se muestra la línea de calibración óptima,
en la que la tasa de aciertos media de un modelo coincide con la confianza producida.
Fuente: elaboración propia

5.5.2 CIFAR-10

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.1 para el dataset
CIFAR-10 se pueden ver en la tabla 5.3. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.6.

Modelo ECE
Tasa de aciertos respecto al intervalo de confianza

0− 20% 20− 40% 40− 60% 60− 80% 80− 100%
CKAN8 11.42% — 27.3% 39.8% 53.7% 83.4%
CKAN16 19.81% — 27.3% 34.8% 43.8% 76.9%
CNN8 10.78% 24.8% 40.6% 61.3% 82.9% 93.8%
CNN16 4.38% 20.7% 36.3% 56.7% 76.4% 92.9%

Tabla 5.9: Resultados obtenidos en el experimento de calibración para el dataset CIFAR-10, mos-
trando el ECE obtenido de cada modelo junto con la tasa de aciertos obtenida respecto a
la probabilidad predecida media. Para el cálculo del ECE y de la tasa de aciertos respecto
a la confianza se han agrupado las muestras en 5 grupos, con intervalos de confianzas
0− 20%, 20− 40%, 40− 60%, 60− 80% y 80− 100%. Las celdas vacías de la tabla indican
que no hay ninguna muestra en su intervalo de confianza para el modelo correspondiente.
Fuente: elaboración propia



5.6. Aprendizaje continuo 67

(a) Curvas de calibración (b) Cantidad de muestras

Figura 5.10: Gráficas que visualizan los resultados del experimento de calibración para el dataset
CIFAR-10, mostrando las curvas de calibración obtenidas para cada modelo junto con
la cantidad de muestras que pertenecen a cada intervalo, tras agrupar las muestras en 5
grupos, con intervalos de confianzas 0−20%, 20−40%, 40−60%, 60−80% y 80−100%.
En la gráfica de curvas de calibración también se muestra la línea de calibración óptima,
en la que la tasa de aciertos media de un modelo coincide con la confianza producida.
Fuente: elaboración propia

5.5.3 Resultados

Los resultados obtenidos con el dataset MNIST, aunque todos los modelos obtienen calibra-
ción muy buena, están muy distorsionados dado el rendimiento de los modelos, obteniendo
todos un tasa de aciertos media superior al 98%. Esto, como se puede ver en la figura 5.9,
causa una tremenda distorsión en las muestras, haciendo que la gran mayoría estén en un
único intervalo de confianza.

Es por esto que, como los resultados en MNIST no van a ser demasiado indicativos, vamos
a centrarnos especialmente en los resultados para el dataset CIFAR-10. En estos resultados
se puede ver que obtenemos curvas de calibración mucho más estables, junto con una distri-
bución de muestras mucho más equilibrada en cada intervalo de confianza. A partir de estos
resultados, podemos ver que los modelos Conv-KAN tienden a producir una mayor confianza
que la tasa de aciertos, mientras que los modelos CNN tienden a producir una menor confian-
za que tasa de aciertos para el dataset CIFAR-10. No obstante, podemos ver que las curvas
de calibración de los modelos CNN son mucho más cercanas a la línea ideal de calibración
que las curvas de los modelos Conv-KAN. Además, se puede observar en la tabla 5.9 que los
modelos CNN también tienen un error de calibración esperado (ECE) mucho menor que los
modelos Conv-KAN.

5.6 Aprendizaje continuo

Actualmente, los modelos de inteligencia artificial no tienden mucha capacidad para retener
información ya aprendida si no se refuerza continuamente esta información en el entrena-
miento (ver apartado 2.5.6 para más información). No obstante, las redes KAN formadas
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exclusivamente por capas densas KAN son capaces de en ciertos casos retener bastante bien
la información aprendida previamente [6]. Para comprobar si esta propiedad se extiende a
las redes convolucionales KAN, diseñaremos un experimento con el fin de intentar comparar
las capacidades de realizar aprendizaje continuo y de retener información de las redes con-
volucionales KAN frente a las redes CNN. Los modelos utilizados de ambas arquitecturas se
pueden ver en la tabla 5.10.

Arquitectura Modelo C1 C2 D

Conv-KAN
CKAN8 8 16 32
CKAN16 16 32 64

CNN
CNN8 8 16 32
CNN16 16 32 64

Tabla 5.10: Modelos Conv-KAN y CNN utilizados para el experimento de aprendizaje continuo,
siendo C1 la cantidad de filtros de la primera capa convolucional, C2 la cantidad de
filtros de la segunda capa convolucional, y D la cantidad de neuronas de la primera capa
densa. Fuente: elaboración propia

El experimento de aprendizaje continuo consiste en entrenar los modelos en fases, de manera
que en cada fase solo reciben un subconjunto de las clases totales a aprender. Como MNIST
y CIFAR-10 tienen 10 clases, dividiremos el entrenamiento en 5 fases, de forma que el modelo
será entrenado con 2 de las 10 clases en cada fase del entrenamiento. Para evaluar lo bien que
retiene información tras cada fase el modelo se ha evaluado con las muestras de evaluación
de todas las clases ya vistas, incluyendo las clases de fases anteriores. Se puede ver las clases
exactas utilizadas para el entrenamiento y la evaluación para cada fase en la tabla 5.11.

Fase Clases de entrenamiento Clases de evaluación
Fase 1 0 y 1 0 y 1
Fase 2 2 y 3 0− 3

Fase 3 4 y 5 0− 5

Fase 4 6 y 7 0− 7

Fase 5 8 y 9 0− 9 (todas)

Tabla 5.11: Clases utilizadas para el entrenamiento y evaluación en cada fase para el experimento
de aprendizaje continuo. En cada fase se ha entrenado el modelo con dos clases no vistas
anteriormente, y se ha evaluado el modelo con todas las clases de esa fase y de las fases
anteriores, de forma que al llegar a la última fase el modelo se evalúa con todas las clases.
Fuente: elaboración propia
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5.6.1 MNIST

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.10 para el dataset
MNIST se pueden ver en la tabla 5.12. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.11.

Modelo Métrica
Fase de entrenamiento

Fase 1 Fase 2 Fase 3 Fase 4 Fase 5

CKAN8
Tasa de aciertos 99.9% 49.0% 31.1% 24.8% 19.7%
F-score 99.9% 34.0% 15.9% 10.1% 6.7%

CKAN16
Tasa de aciertos 99.9% 49.1% 31.1% 24.7% 19.8%
F-score 99.9% 34.3% 15.8% 10.0% 6.6%

CNN8
Tasa de aciertos 99.8% 48.8% 31.0% 12.9% 10.2%
F-score 99.8% 33.0% 16.2% 3.2% 2.1%

CNN16
Tasa de aciertos 99.9% 49.0% 31.1% 24.8% 13.0%
F-score 99.9% 34.5% 15.8% 10.0% 6.5%

Tabla 5.12: Resultados obtenidos en el experimento de aprendizaje continuo para el conjunto de
datos MNIST tras cada una de las 5 fases de entrenamiento descritas en la tabla 5.11.
Los mejores resultados obtenidos en términos de tasa de aciertos y de f-score para cada
fase de entrenamiento están en negrita. Fuente: elaboración propia

(a) Resultados en términos de tasa de aciertos (b) Resultados en términos de f-score

Figura 5.11: Visualización de los resultados obtenidos en el experimento de aprendizaje continuo
para el conjunto de datos MNIST para cada uno de los modelos entrenados. Los re-
sultados se han visualizado en términos de tasa de aciertos (a) y de f-score (b) para
cada una de las 5 fases de entrenamiento descritas en la tabla 5.11. Fuente: elaboración
propia
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5.6.2 CIFAR-10

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.10 para el data-
set CIFAR-10 se pueden ver en la tabla 5.13. Se han representado los resultados obtenidos
respecto a la tasa de aciertos y respecto a la f-score en la figura 5.12.

Modelo Métrica
Fase de entrenamiento

Fase 1 Fase 2 Fase 3 Fase 4 Fase 5

CKAN8
Tasa de aciertos 93.6% 40.2% 28.7% 24.0% 18.5%
F-score 93.5% 26.9% 14.4% 9.7% 6.4%

CKAN16
Tasa de aciertos 93.6% 40.5% 29.3% 23.8% 18.4%
F-score 93.5% 27.2% 14.7% 9.5% 6.4%

CNN8
Tasa de aciertos 92.1% 39.7% 28.8% 23.0% 16.3%
F-score 92.0% 26.6% 14.5% 9.3% 6.2%

CNN16
Tasa de aciertos 93.9% 41.6% 29.1% 23.8% 10.1%
F-score 93.9% 27.9% 14.6% 9.6% 1.9%

Tabla 5.13: Resultados obtenidos en el experimento de aprendizaje continuo para el conjunto de
datos CIFAR-10 tras cada una de las 5 fases de entrenamiento descritas en la tabla 5.11.
Los mejores resultados obtenidos en términos de tasa de aciertos y de f-score para cada
fase de entrenamiento están en negrita. Fuente: elaboración propia

(a) Resultados en términos de tasa de aciertos (b) Resultados en términos de f-score

Figura 5.12: Visualización de los resultados obtenidos en el experimento de aprendizaje continuo
para el conjunto de datos CIFAR-10 para cada uno de los modelos entrenados. Los
resultados se han visualizado en términos de tasa de aciertos (a) y de f-score (b) para
cada una de las 5 fases de entrenamiento descritas en la tabla 5.11. Fuente: elaboración
propia
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5.6.3 Resultados
Como se puede ver, en ambos conjuntos de datos se observa que las redes convolucionales
KAN suelen producir mejores resultados en las fases posteriores del entrenamiento. Aunque
esto pueda significar que las redes Conv-KAN tengan mejor capacidad de retención de infor-
mación que las redes CNN, no se observa una retención de información significativa, como
se ha observado en redes KAN no convolucionales. Por lo tanto, los experimentos realizados
parecen indicar que las redes KAN pierden su capacidad de retener información aprendida
anteriormente al utilizar capas KAN convolucionales.





6 Conclusiones
Como se ha podido ver durante el desarrollo de este trabajo, las redes Kolmogórov-Arnold
son un tipo de red neuronal fundamentalmente diferente a las redes neuronales tradicionales.
Se ha visto como se forman las capas densas y convolucionales KAN a partir de la compo-
sición de funciones base, explicando toda la teoría matemática necesaria para entender su
funcionamiento correctamente. Además, también se han estudiado las diferentes estructuras
matemáticas existentes para formar la base de las redes KAN, aunque durante el desarrollo
del trabajo nos hemos centrado principalmente en las splines, dado que son las estructuras
utilizadas más frecuentemente en las redes KAN, además también de ser las utilizadas en el
trabajo original que propuso las redes KAN.

Con los experimentos, se ha intentado verificar si muchas de las propiedades que tienen
las redes KAN densas se mantienen a la hora de usar redes KAN convolucionales. En estos
experimentos, se ha cuantificado la eficiencia respecto al número de parámetros del modelo,
la eficiencia respecto al número de datos de entrenamiento, la calibración y la capacidad
de retención de información en tareas de aprendizaje continuo del modelo. Tras medir estas
propiedades para varios modelos convolucionales KAN y compararlas con modelos convolu-
cionales tradicionales, no se han observado muchas de las propiedades observadas en las redes
KAN densas.

Aunque este tipo de redes aún son experimentales, son un tipo de arquitectura muy no-
vedosa e interesante, que tiene potencial para revolucionar el campo si ciertos aspectos de
la arquitectura KAN se generalizan a modelos más grandes. Son de especial importancia la
capacidad de retención de información en tareas de aprendizaje continuo y la interpretabi-
lidad de los modelos, que son dos propiedades que carecen los modelos contemporáneos de
machine learning. Dado lo recientes que son este tipo de redes y que aún la gran mayoría
de experimentos se han realizado con modelos de pequeño tamaño, habrá que ver si estas
propiedades se pueden utilizar con modelos de mayor tamaño.

6.1 Futuras líneas de investigación
Durante la realización de este trabajo se han analizado y estudiado muchas de las aplicaciones
y propiedades de las redes Kolmogórov-Arnold. No obstante, principalmente por la falta de
recursos de computación, hemos tenido que limitar los experimentos a una única faceta de
las redes KAN: las redes KAN convolucionales.

A continuación se enumeran algunas de las aplicaciones potenciales de las redes KAN que
no se han analizado o explicado, junto con un pequeño resumen de su posible utilidad:

• Analizar redes KAN basadas en otras estructuras matemáticas: aunque existan muchas
estructuras matemáticas que se puedan aplicar a las redes KAN, no existe mucha li-
teratura analizando las ventajas y desventajas específicas de cada una, y que mida el
rendimiento de cada una para varias aplicaciones.
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• Probar otras arquitecturas Conv-KAN: en los experimentos de este trabajo se ha utiliza-
do una arquitectura Conv-KAN basada en las redes CNN tradicionales, estructurando
las capas de forma similar a las redes convolucionales basadas en capas MLP. Es posible
que otras estructuras, como el uso exclusivo de capas convolucionales o la incorporación
de otras técnicas vistas en otros tipos de redes puedan mejorar el rendimiento y/o la
eficiencia obtenidos.

• Redes KAN recurrentes: Al igual que las redes KAN se pueden extender a las re-
des convolucionales, también se pueden extender a las redes recurrentes o RNNs. Co-
mo actualmente no existen implementaciones de redes KAN recurrentes, se necesitaría
adaptar las arquitecturas LSTM [81] o BRNN [82] a las redes KAN para comprobar su
funcionamiento. Esto, además, permitiría la construcción de redes KAN convolucinales-
recurrentes, o redes CRNN que utilicen capas KAN para su funcionamiento. No obs-
tante, como no existen implementaciones o estudios anteriores, sería necesario elaborar
una implementación para comprobar las propiedades de las redes KAN recurrentes.

• Transformers KAN: Al igual que para las redes recurrentes, también es posible extender
la arquitectura KAN a los transformers. A diferencia que para las redes recurrentes, si
que existen estudios e implementaciones de transformers KAN [83, 84, 85]. Igualmente,
como la literatura para este tipo de arquitecturas es muy limitada, se podría realizar un
estudio comparativo similar al realizado en este trabajo para las redes convolucionales
KAN, analizando el potencial de las arquitecturas que combinan las redes KAN con los
transformers.

• Estudiar como adaptar las capas Dropout para su funcionamiento en las redes KAN,
para que funcionen de forma efectiva en las arquitecturas que utilicen capas KAN densas
o convolucionales [80].

• Estudiar el uso de las redes KAN para otras tareas de inteligencia artificial, como tareas
de regresión numérica, detección de objetos, segmentación, etc.; explorando como se
comportan las redes KAN a la hora de ser entrenadas para realizar este tipo de tareas
y de si las propiedades comúnmente asociadas con las redes KAN se mantienen en este
tipo de tareas.

• Estudiar formas alternativas de entrenar redes KAN para aprovechar al máximo sus
propiedades, como el uso de grid-extension estático o dinámico [6], o el uso de algoritmos
de entrenamiento diseñados específicamente para las redes KAN, como su construcción
utilizando el método de Newton-Kaczmarz [86].

6.2 Cumplimiento de objetivos
En cuanto a los objetivos del trabajo, podemos concluir lo siguiente:

• Hacer una revisión de la base teórica de las redes KAN: se ha realizado una
explicación de toda la base teórica y matemática de las redes KAN, explicando los
conocimientos necesarios para poder entender su funcionamiento, incluyendo el cono-
cimiento de machine learning e inteligencia artificial necesario para entender las redes
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KAN y como se diferencian de las redes neuronales tradicionales. Además de esto, se
han estudiado ciertas técnicas de entrenamiento específicas a las redes KAN y las mu-
chas alternativas que existen para implementar la estructura interna de las capas de las
redes KAN.

• Hacer una implementación propia de un modelo KAN: se ha realizado una
implementación de un modelo KAN en el apartado 4, con el fin de ver como se podría
llegar a realizar una implementación de las arquitecturas KAN. Se ha decidido realizar
una implementación sencilla y sin muchas opciones a propósito, para poder mostrar las
ideas y las estructuras requeridas para llegar a realizar una implementación claramen-
te, al no necesitar complicar demasiado el código al realizar una implementación más
general. Para que la implementación sea razonablemente eficiente, aunque no se han
realizado optimizaciones que compliquen demasiado el código, se han utilizado estruc-
turas de numpy [67] siempre que ha sido posible con el fin de calcular eficientemente los
parámetros de la red.

• Evaluar y comparar el rendimiento ante alternativas: en el apartado 5 se han
realizado múltiples experimentos con el fin de confirmar y comprobar el rendimiento y la
eficiencia de las redes KAN convolucionales, comparando los resultados de la redes KAN
convolucionales con los resultados obtenidos por las redes convolucionales tradicionales.
Para poder entender todo este proceso, en el apartado 2.5 se han explicado muchas de
las técnicas de evaluación de modelos utilizadas en los experimentos, prestando especial
atención a las métricas utilizadas en tareas de clasificación de imágenes, ya que este
tipo de tareas son las que se han utilizado para realizar los experimentos.

• Hacer un análisis de ventajas y limitaciones de las redes KAN: en muchas
de las secciones del capítulo 3, se han mencionado muchas de las ventajas inherentes
a las redes KAN, citando estudios previos que han investigado en detalle estas propie-
dades de las redes KAN, como su mayor eficiencia a la hora de predecir ciertos datos,
su mayor robustez en tareas de aprendizaje continuo o su interpretabilidad. Además,
también se han enumerado las múltiples limitaciones, como la cantidad de parámetros
que requieren, el tiempo requerido para su uso y entrenamiento, o que algunas de las
técnicas estándar de machine learning, como el dropout, no se pueden aplicar a las redes
KAN

• Proponer líneas futuras de investigación: en la sección 6.1 se han enumerado
las muchas posibles líneas de investigación posibles. Como las redes KAN son una
arquitectura muy reciente, existen muchas líneas de investigación interesantes, como la
implementación de las redes KAN en otros tipos de arquitecturas (como los transformers
o las redes recurrentes) o el estudio de posibles técnicas de machine learning específicas
a las redes KAN

6.3 Conclusiones personales
Durante la realización de este trabajo, ha sido necesario aprender sobre un tema novedoso y
poco investigado. Esto ha requerido una indagación diligente de las pocas publicaciones sobre
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el tema, además de gran cantidad de prueba y error a la hora de realizar la implementación
propia y los experimentos. No obstante, aunque ha sido un trabajo bastante extenso y largo,
considero que he aprendido muchísimo durante la realización del mismo.

Lo primero, gracias a este trabajo he reforzado profundamente mis conocimientos de inte-
ligencia artificial. Al tener que explicar muchos de estos conceptos fundamentales de forma
breve pero práctica, he tenido que indagar a cerca de una gran cantidad de estos conocimien-
tos, aprendiendo mucho al repasar y revisar todas las ideas fundamentales de la inteligencia
artificial. Especialmente, al intentar explicar el algoritmo de retropropagación de las redes
neuronales, he tenido que aprender bastantes detalles para poder realizar una explicación
detalla e intuitiva del algoritmo.

Más importante aún, para poder realizar este trabajo he necesitado aprender sobre las redes
KAN. Uno de los principales problemas ha sido la falta de información a cerca del tema, al
existir una cantidad muy limitada de publicaciones y de información disponible, dado lo
reciente que es la arquitectura KAN. Esto es en parte lo que ha hecho que el trabajo sea tan
satisfactorio e interesante, ya que investigar y aprender a cerca de un tema tan novedoso de
la inteligencia artificial no es algo que haya hecho anteriormente.

Las principales dificultades del trabajo han ocurrido a la hora de realizar la implementación
propia en Python. Dediqué una gran cantidad de tiempo a perfeccionarla y a corregir nume-
rosos problemas que habían surgido, ya que durante todo su desarrollo la implementación ha
presentado múltiples problemas constantes, la mayoría causados por la falta de información al
respecto. Esto me ha obligado a experimentar mucho durante la realización de la implemen-
tación, probando múltiples alternativas y opciones hasta resolver los problemas existentes.
Ha sido mediante la corrección de estos problemas y mediante el perfeccionamiento de la
implementación que he aprendido muchos de los detalles específicos de las redes KAN. Estos
detalles no solo me han ayudado a reforzar mi intuición y conocimiento a cerca de las redes
KAN, si no que me han permitido realizar una mejor explicación de las mismas durante el
desarrollo del trabajo.

Durante los experimentos, también han surgido una multitud de problemas, especialmente
causados por lo experimentales y recientes que son muchas de las implementaciones de las re-
des KAN, especialmente teniendo en cuenta que se han utilizado redes KAN convolucionales.
A parte de reforzar mis conocimientos de pytorch, he aprendido mucho a cerca de como im-
plementar modelos personalizados KAN. Esto ha sido en gran parte por que he necesitado en
múltiples ocasiones leer y analizar el código fuente de las implementaciones KAN utilizadas
en los experimentos, ya que muchas de estas implementaciones tienen una documentación
muy poco detallada, o incluso en algunos casos no disponen de ninguna documentación.

Incluso teniendo en cuenta todos los problemas y dificultades, considero que el trabajo ha
sido una experiencia muy enriquecedora para mis conocimientos de inteligencia artificial y
machine learning, ya que me ha permitido reforzar muchas de las ideas y conceptos fundamen-
tales de estos campos. Además, la realización del trabajo me ha permitido aprender mucho
a cerca de un tema muy interesante y novedoso, y me ha ofrecido una nueva perspectiva a
cerca del desarrollo e implementación de modelos de inteligencia artificial.



Bibliografía

[1] L. K. Boran and A. H. Joya, “From Pixels to Predictions: A Comprehensive Survey of
Image Classification,” International Journal for Research in Applied Science & Enginee-
ring Technology, vol. 12, no. 11, 2024.

[2] L. Qin, Q. Chen, X. Feng, Y. Wu, Y. Zhang, Y. Li, M. Li, W. Che, and P. S. Yu, “Large
Language Models Meet NLP: A Survey,” 2024.

[3] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, “A Survey
of Modern Deep Learning based Object Detection Models,” 2021.

[4] M. T. Augustine, “A Survey on Universal Approximation Theorems,” 2024.

[5] K. A. N., “On the representation of continuous functions of many variables by super-
position of continuous functions of one variable and addition,” Translations American
Mathematical Society, vol. 2, no. 28, pp. 55–59, 1963.

[6] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljačić, T. Y. Hou, and M. Teg-
mark, “KAN: Kolmogorov-Arnold Networks,” 2024.

[7] Geeks for Geeks, “Underfitting and Overfitting.” https://www.geeksforgeeks.org/
underfitting-and-overfitting-in-machine-learning/. Accedido: 19/4/2025.

[8] Geeks for Geeks, “Unsupervised Learning.” https://www.geeksforgeeks.org/
unsupervised-learning/. Accedido: 19/4/2025.

[9] Geeks for Geeks, “Reinforcement Learning.” https://www.geeksforgeeks.org/
what-is-reinforcement-learning/. Accedido: 19/4/2025.

[10] D. Kriesel, “A Brief Introduction to Neural Networks,” 2007.

[11] C. A. L. Bailer-Jones, R. Gupta, and H. P. Singh, “An introduction to Artificial Neural
Networks,” 2001.

[12] A. M. Geoffrion, “Objective function approximations in mathematical programming,”
Mathematical Programming, vol. 13, pp. 23–37, Dec 1977.

[13] Geeks for Geeks, “Activation Functions.” https://www.geeksforgeeks.org/
activation-functions-neural-networks/. Accedido: 19/4/2025.

[14] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” 2015.

[15] Better Explained, “Intuitive guide to convolution.” https://betterexplained.com/
articles/intuitive-convolution/. Accedido: 20/4/2025.

77

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/unsupervised-learning/
https://www.geeksforgeeks.org/unsupervised-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://betterexplained.com/articles/intuitive-convolution/
https://betterexplained.com/articles/intuitive-convolution/


78 Bibliografía

[16] Janosh Riebesell, “TikZ.net: Convolution Operator.” https://tikz.net/conv2d/. Ac-
cedido: 21/2/2025.

[17] Dhanush Kumar, “Max Pooling.” https://medium.com/@danushidk507/
max-pooling-ef545993b6e4, 2023. Accedido: 20/4/2025.

[18] Computer Science Wiki, “MaxpoolSample2.png.” https://computersciencewiki.org/
index.php/File:MaxpoolSample2.png. Accedido: 20/4/2025.

[19] Geeks for Geeks, “Common Loss Functions.” https://www.geeksforgeeks.org/
ml-common-loss-functions/, 2025. Accedido: 20/4/2025.

[20] Brent Scarff, “Understanding Backpropagation.” https://towardsdatascience.com/
understanding-backpropagation-abcc509ca9d0/, 2021. Accedido: 20/4/2025.

[21] Pytorch, “torch.optim.” https://docs.pytorch.org/docs/stable/optim.html. Acce-
dido: 21/5/2025.

[22] H. Bichri, A. Chergui, and H. Mustapha, “Investigating the Impact of Train / Test Split
Ratio on the Performance of Pre-Trained Models with Custom Datasets,” International
Journal of Advanced Computer Science and Applications, vol. 15, 01 2024.

[23] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning:
With applications in R, p. 176. Springer US Springer, 2013.

[24] H. Phillips, “A Simple Introduction to Softmax.” https://medium.com/
@hunter-j-phillips/a-simple-introduction-to-softmax-287712d69bac. Ac-
cedido: 11/5/2025.

[25] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On Calibration of Modern Neural
Networks,” in Proceedings of the 34th International Conference on Machine Learning
(D. Precup and Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning Research,
pp. 1321–1330, PMLR, 06–11 Aug 2017.

[26] Geeks for Geeks, “Metrics for Machine Learning models.” https://www.geeksforgeeks.
org/metrics-for-machine-learning-model/. Accedido: 11/5/2025.

[27] R. Sandhu, “Class Imbalance Vs Accuracy.” https://medium.com/@rajsandhu1989/
class-imbalance-vs-accuracy-9739f5deece0. Accedido: 11/5/2025.

[28] S. Amarendra, “Optimizing Parameter Efficiency in Machine Learning Models: A Fo-
cus on Reducing Memory Overhead with L-BFGS-Optimized Algorithms,” Journal of
Electrical Systems, vol. 20, pp. 298–314, 04 2024.

[29] Y. Yang, H. Kang, and B. Mirzasoleiman, “Towards Sustainable Learning: Coresets for
Data-efficient Deep Learning,” International Conference on Machine Learning (ICML),
2023.

[30] T. Y. Liu and B. Mirzasoleiman, “Data-Efficient Augmentation for Training Neural
Networks,” Advances in Neural Information Processing Systems (NeurIPS), 2022.

https://tikz.net/conv2d/
https://medium.com/@danushidk507/max-pooling-ef545993b6e4
https://medium.com/@danushidk507/max-pooling-ef545993b6e4
https://computersciencewiki.org/index.php/File:MaxpoolSample2.png
https://computersciencewiki.org/index.php/File:MaxpoolSample2.png
https://www.geeksforgeeks.org/ml-common-loss-functions/
https://www.geeksforgeeks.org/ml-common-loss-functions/
https://towardsdatascience.com/understanding-backpropagation-abcc509ca9d0/
https://towardsdatascience.com/understanding-backpropagation-abcc509ca9d0/
https://docs.pytorch.org/docs/stable/optim.html
https://medium.com/@hunter-j-phillips/a-simple-introduction-to-softmax-287712d69bac
https://medium.com/@hunter-j-phillips/a-simple-introduction-to-softmax-287712d69bac
https://www.geeksforgeeks.org/metrics-for-machine-learning-model/
https://www.geeksforgeeks.org/metrics-for-machine-learning-model/
https://medium.com/@rajsandhu1989/class-imbalance-vs-accuracy-9739f5deece0
https://medium.com/@rajsandhu1989/class-imbalance-vs-accuracy-9739f5deece0


Bibliografía 79

[31] F. Faghri, “Training Efficiency and Robustness in Deep Learning,” 2021.

[32] J. Thiyagalingam, M. Shankar, G. Fox, and T. Hey, “Scientific Machine Learning bench-
marks,” Nature Reviews Physics, vol. 4, pp. 413–420, Jun 2022.

[33] C. Wang, “Calibration in Deep Learning: A Survey of the State-of-the-Art,” 2024.

[34] M. Pavlovic, “Understanding Model Calibration: A gentle introduction and visual ex-
ploration of calibration and the expected calibration error (ECE),” 2025.

[35] NapsterInBlue, “Using calibration curves to pick your classifier.” https:
//napsterinblue.github.io/notes/machine_learning/model_selection/
calibration_curves/. Accedido: 11/5/2025.

[36] Gido M. van de Ven and Nicholas Soures and Dhireesha Kudithipudi, “Continual Lear-
ning and Catastrophic Forgetting,” 2024.

[37] M. McCloskey and N. J. Cohen, “Catastrophic Interference in Connectionist Networks:
The Sequential Learning Problem,” in Catastrophic Interference in Connectionist Net-
works (G. H. Bower, ed.), vol. 24 of Psychology of Learning and Motivation, pp. 109–165,
Academic Press, 1989.

[38] D.-W. Zhou, Q.-W. Wang, Z.-H. Qi, H.-J. Ye, D.-C. Zhan, and Z. Liu, “Class-Incremental
Learning: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 46, no. 12, p. 9851–9873, 2024.

[39] A. D. Bodner, A. S. Tepsich, J. N. Spolski, and S. Pourteau, “Convolutional kolmogorov-
arnold networks,” 2025.

[40] V. Starostin, “ConvKAN.” https://github.com/StarostinV/convkan. Accedido:
12/5/2025.

[41] G. Farin, “8 - B-Spline Curves,” in Curves and Surfaces for CAGD (Fifth Edition)
(G. Farin, ed.), The Morgan Kaufmann Series in Computer Graphics, pp. 119–146,
Morgan Kaufmann, fifth edition ed., 2002.

[42] P. Gupta, “KAN Tutorial: Splines.” https://github.com/pg2455/KAN-Tutorial/
blob/main/1_splines.ipynb, 2024. Accedido: 3/2/2025.

[43] Z. Li, “FastKAN.” https://github.com/ZiyaoLi/fast-kan. Accedido: 12/5/2025.

[44] C. K. Shene, “De Boor’s Algorithm.” https://pages.mtu.edu/~shene/COURSES/
cs3621/NOTES/spline/de-Boor.html. Accedido: 20/4/2025.

[45] C.-K. Shene, “Derivatives of a B-spline Curve.” https://pages.mtu.edu/~shene/
COURSES/cs3621/NOTES/spline/B-spline/bspline-derv.html. Accedido: 7/2/2025.

[46] Neil Dodgson, “B-splines.” https://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/
SMAG/node4.html. Accedido: 20/4/2025.

[47] T. J. Rivlin, Chebyshev polynomials. Courier Dover Publications, 2020.

https://napsterinblue.github.io/notes/machine_learning/model_selection/calibration_curves/
https://napsterinblue.github.io/notes/machine_learning/model_selection/calibration_curves/
https://napsterinblue.github.io/notes/machine_learning/model_selection/calibration_curves/
https://github.com/StarostinV/convkan
https://github.com/pg2455/KAN-Tutorial/blob/main/1_splines.ipynb
https://github.com/pg2455/KAN-Tutorial/blob/main/1_splines.ipynb
https://github.com/ZiyaoLi/fast-kan
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/de-Boor.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/de-Boor.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-derv.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-derv.html
https://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/SMAG/node4.html
https://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/SMAG/node4.html


80 Bibliografía

[48] S. SS, K. AR, G. R, and A. KP, “Chebyshev Polynomial-Based Kolmogorov-Arnold
Networks: An Efficient Architecture for Nonlinear Function Approximation,” 2024.

[49] Guo Dawei, “ChebyKAN.” https://github.com/SynodicMonth/ChebyKAN. Accedido:
20/4/2025.

[50] Wolfram MathWorld, “Fourier Series.” https://mathworld.wolfram.com/
FourierSeries.html. Accedido: 20/4/2025.

[51] M. Bôcher, “Introduction to the Theory of Fourier’s Series,” Annals of Mathematics,
vol. 7, no. 3, pp. 81–152, 1906.

[52] J. Zhang, Y. Fan, K. Cai, and K. Wang, “Kolmogorov-Arnold Fourier Networks,” 2025.

[53] Gist Noesis, “FourierKAN.” https://github.com/GistNoesis/FourierKAN/N. Accedi-
do: 20/4/2025.

[54] Wolfram MathWorld, “Jacobi Polynomial.” https://mathworld.wolfram.com/
JacobiPolynomial.html. Accedido: 20/4/2025.

[55] Wolfram Mathworld, “Gamma Function.” https://mathworld.wolfram.com/
GammaFunction.html. Accedido: 20/4/2025.

[56] Alireza Afzal Aghaei, “fKAN: Fractional Kolmogorov-Arnold Networks with trainable
Jacobi basis functions,” 2024.

[57] SpaceLearner, “JacobiKAN.” https://github.com/SpaceLearner/JacobiKAN. Accedi-
do: 20/4/2025.

[58] O. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE Signal Processing
Magazine, vol. 8, no. 4, pp. 14–38, 1991.

[59] Z. Bozorgasl and H. Chen, “Wav-KAN: Wavelet Kolmogorov-Arnold Networks,” 2024.

[60] Zavareh Bozorgasl and Hao Chen, “Wav-KAN.” https://github.com/zavareh1/
Wav-KAN. Accedido: 20/4/2025.

[61] D. H. Griffel, “Wavelets and operators,” The Mathematical Gazette, vol. 79, no. 484,
p. 227–228, 1995.

[62] Q. Qiu, T. Zhu, H. Gong, L. Chen, and H. Ning, “ReLU-KAN: New Kolmogorov-Arnold
Networks that Only Need Matrix Addition, Dot Multiplication, and ReLU,” 2024.

[63] Q. Qiu and T. Zhu, “ReLU-KAN.” https://github.com/quiqi/relu_kan. Accedido:
20/4/2025.

[64] Y. Wang, N. Wagner, and J. M. Rondinelli, “Symbolic regression in materials science,”
MRS Communications, vol. 9, no. 3, p. 793–805, 2019.

[65] J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution detection: A sur-
vey,” 2024.

https://github.com/SynodicMonth/ChebyKAN
https://mathworld.wolfram.com/FourierSeries.html
https://mathworld.wolfram.com/FourierSeries.html
https://github.com/GistNoesis/FourierKAN/N
https://mathworld.wolfram.com/JacobiPolynomial.html
https://mathworld.wolfram.com/JacobiPolynomial.html
https://mathworld.wolfram.com/GammaFunction.html
https://mathworld.wolfram.com/GammaFunction.html
https://github.com/SpaceLearner/JacobiKAN
https://github.com/zavareh1/Wav-KAN
https://github.com/zavareh1/Wav-KAN
https://github.com/quiqi/relu_kan


Bibliografía 81

[66] Pytorch, “SiLU.” https://pytorch.org/docs/stable/generated/torch.nn.SiLU.
html. Accedido: 7/2/2025.

[67] NumPy, “NumPy user guide.” https://numpy.org/doc/stable/user/index.html. Ac-
cedido: 27/5/2025.

[68] W. Schools, “NumPy Array Slicing.” https://www.w3schools.com/python/numpy/
numpy_array_slicing.asp. Accedido: 7/2/2025.

[69] S. K. Kumar, “On weight initialization in deep neural networks,” 2017.

[70] Pytorch Foundation, “Pytorch.” https://pytorch.org/. Accedido: 11/5/2025.

[71] Pytorch, “AdamW.” https://pytorch.org/docs/stable/generated/torch.optim.
AdamW.html. Accedido: 3/5/2025.

[72] Pytorch, “ExponentialLR.” https://pytorch.org/docs/stable/generated/torch.
optim.lr_scheduler.ExponentialLR.html. Accedido: 3/5/2025.

[73] Papers with Code, “Datasets: Image Classification.” https://paperswithcode.com/
datasets?task=image-classification. Accedido: 18/5/2025.

[74] L. Deng, “The MNIST Database of Handwritten Digit Images for Machine Learning
Research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[75] A. Krizhevsky, “The CIFAR-10 and CIFAR-100 datasets.” https://www.cs.toronto.
edu/~kriz/cifar.html. Accedido: 12/5/2025.

[76] Pytorch, “Conv2d.” https://docs.pytorch.org/docs/stable/generated/torch.nn.
Conv2d.html. Accedido: 12/5/2025.

[77] Pytorch, “Linear.” https://docs.pytorch.org/docs/stable/generated/torch.nn.
Linear.html. Accedido: 12/5/2025.

[78] M. Amirian and F. Schwenker, “Radial Basis Function Networks for Convolutional Neu-
ral Networks to Learn Similarity Distance Metric and Improve Interpretability,” IEEE
Access, vol. 8, p. 123087–123097, 2020.

[79] Z. Li, “FastKAN README.” https://github.com/ZiyaoLi/fast-kan/blob/master/
README.md. Accedido: 13/5/2025.

[80] M. G. Altarabichi, “DropKAN: Regularizing KANs by masking post-activations,” 2024.

[81] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber, “LSTM:
A Search Space Odyssey,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 28, no. 10, p. 2222–2232, 2017.

[82] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transac-
tions on Signal Processing, vol. 45, no. 11, p. 2673–2681, 1997.

[83] X. Yang and X. Wang, “Kolmogorov-arnold transformer,” 2024.

https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html
https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html
https://numpy.org/doc/stable/user/index.html
https://www.w3schools.com/python/numpy/numpy_array_slicing.asp
https://www.w3schools.com/python/numpy/numpy_array_slicing.asp
https://pytorch.org/
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html
https://paperswithcode.com/datasets?task=image-classification
https://paperswithcode.com/datasets?task=image-classification
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://github.com/ZiyaoLi/fast-kan/blob/master/README.md
https://github.com/ZiyaoLi/fast-kan/blob/master/README.md


82 Bibliografía

[84] A. Dash, “kanformers.” https://github.com/akaashdash/kansformers. Accedido:
17/5/2025.

[85] Z. Chen, Gundavarapu, and W. DI, “Vision-KAN.” https://github.com/
chenziwenhaoshuai/Vision-KAN. Accedido: 17/5/2025.

[86] M. Poluektov and A. Polar, “Construction of the Kolmogorov-Arnold representation
using the Newton-Kaczmarz method,” 2025.

https://github.com/akaashdash/kansformers
https://github.com/chenziwenhaoshuai/Vision-KAN
https://github.com/chenziwenhaoshuai/Vision-KAN

	Introducción
	Objetivos
	Estructura del trabajo

	Inteligencia artificial
	Función objetivo
	Neuronas artificiales
	Funciones de activación

	Redes neuronales artificiales
	Capas densas
	Capas convolucionales

	Entrenamiento
	Retropropagación
	Descenso por gradiente

	Evaluación de modelos
	División de datos
	Logits
	Métricas de rendimiento
	Métricas de eficiencia
	Calibración
	Aprendizaje continuo y el olvido catastrófico


	Redes Kolmogórov-Arnold
	Teorema de representación
	Capas KAN
	Capas densas
	Capas convolucionales

	Funciones KAN
	Splines
	Función residual

	Entrenamiento
	Retropropagación
	Grid extension

	Propiedades
	Interpretabilidad
	Aprendizaje continuo
	Generalización de los datos


	Implementación en Python
	Funciones auxiliares
	Clase KANNeuron
	Método spline()
	Método train()
	Otros métodos
	Código completo

	Clase KANLayer
	Método __call__()
	Método train()
	Otros métodos
	Código completo

	Clase KAN

	Experimentos
	Conjuntos de datos utilizados
	MNIST
	CIFAR-10

	Arquitecturas utilizadas
	Redes CNN
	Redes Conv-KAN

	Eficiencia respecto al número de parámetros
	MNIST
	CIFAR-10
	Resultados

	Eficiencia respecto al número de datos de entrenamiento
	MNIST
	CIFAR-10
	Resultados

	Calibración
	MNIST
	CIFAR-10
	Resultados

	Aprendizaje continuo
	MNIST
	CIFAR-10
	Resultados


	Conclusiones
	Futuras líneas de investigación
	Cumplimiento de objetivos
	Conclusiones personales

	Bibliografía

