Exploracion de
arquitecturas
neuronales basadas en
Kolmogorov-Arnold
Networks

Master Universitario en Ciencia de
’ Datos

Trabajo Fin de Master

Autor:
Vicent Baeza Esteve

aaaaaaaaaaaaaaaaaa

Universitat d’Alacant
Universidad de Alicante

%

Junio 2025

Exploraciéon de arquitecturas neuronales
basadas en Kolmogorov-Arnold
Networks

Estudio sobre las arquitecturas neuronales basadas en
Kolmogorov-Arnold Networks y sus aplicaciones en inteligencia
artificial

Autor
Vicent Baeza Esteve

Tutor/es

Jorge Calvo Zaragoza
Departamento de Lenguajes y Sistemas Informdticos

Maéster Universitario en Ciencia de Datos

Escuela Universitat ' Alacant
Politécni AN\ niversita acan
° te(.: ca /=2 Universidad de Alicante
/4 Superior

ALICANTE, Junio 2025

Resumen

Este proyecto tiene como objetivo explorar las Redes Kolmogorov-Arnold (KAN), un tipo
de red neuronal basado en el teorema de representacion de Kolmogorov-Arnold, que sostiene
que cualquier funcién continua de varias variables puede representarse como una suma de
funciones continuas de una variable. Este enfoque tedrico ofrece un marco alternativo a las
arquitecturas convencionales de redes neuronales profundas. A través de la implementacién y
evaluacién de redes KAN en distintas aplicaciones de ciencia de datos, se busca comparar su
rendimiento con modelos tradicionales como las redes neuronales basadas en perceptrones,
midiendo su precisién, eficiencia computacional y capacidad de generalizacién. Se realizaran
experimentos utilizando conjuntos de datos de tareas tipicas como regresién, clasificacion o
prediccién en series temporales.

Indice general

1

Introduccién

1.1
1.2

Objetivos
Estructura del trabajo

Inteligencia artificial

2.1

2.2

2.3

2.4

2.5

Funcion objetivo
Neuronas artificiales
2.2.1 Funciones de activacién
Redes neuronales artificiales L
2.3.1 Capasdensas
2.3.2 Capas convolucionales
Entrenamiento
2.4.1 Retropropagacion
2.4.2 Descenso por gradiente Lo
Evaluacion de modelos
2.5.1 Divisibnde datos
2.5.2 Logits
2.5.3 Métricas de rendimiento L.
2.5.4 Métricas de eficienciao
2.5.5 Calibracidon e
2.5.6 Aprendizaje continuo y el olvido catastrofico

Redes Kolmogérov-Arnold

3.1
3.2

3.3

3.4

3.5

Teorema de representacion
Capas KAN
3.21 Capasdensas
3.2.2 Capas convolucionales . . .
Funciones KAN
3.3.1 Splines.
3.3.2 Funcién residual
Entrenamiento
3.4.1 Retropropagacion
3.4.2 Grid extension
Propiedades
3.5.1 Interpretabilidad
3.5.2 Aprendizaje continuo

3.5.3 Generalizacién de los datos

N DO

© 0o o G

10
11
13
13
14
15
15
16
16
18
20
21

23
24
24
25
26
27
28
33
34
34
37
39
39
40
41

vii

viii

INDICE GENERAL

4

Implementacion en Python
4.1 Funciones auxiliares
4.2 Clase KANNeuron
4.2.1 Método spline()
4.2.2 Método train()
4.2.3 Otros métodos
4.2.4 Cdbdigo completo

4.3 Clase KANLayer
4.3.1 Método call ()
4.3.2 Método train()
4.3.3 Otros métodos
4.3.4 Cbdigo completo

4.4

Experimentos

5.1 Conjuntos de datos utilizados

5.2 Arquitecturas utilizadas
5.2.1 Redes CNN
5.2.2 Redes Conv-KAN

5.3
5.3.1 MNIST
5.3.2 CIFAR-10
5.3.3 Resultados

5.4
5.4.1 MNIST
5.4.2 CIFAR-10
5.4.3 Resultados

5.5
5.5.1 MNIST
5.5.2 CIFAR-10
5.5.3 Resultados

5.6 Aprendizaje continuo
5.6.1 MNIST
5.6.2 CIFAR-10
5.6.3 Resultados

Conclusiones

6.1 Futuras lineas de investigacién
6.2 Cumplimiento de objetivos
6.3 Conclusiones personales

Clase KAN

5.1.1 MNIST

5.1.2 CIFAR-10

Eficiencia respecto al ntimero de parametros

Eficiencia respecto al ntimero de datos de entrenamiento

Calibracion

Bibliografia

Indice de figuras

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3
3.4

3.5

3.6

Representacién de un modelo computacional como un grafo, con entradas (ver-
de), nodos de procesamiento (azul) y nodos de salda (rojo). Las aristas del grafo
indican el flujo de datos del modelo oo 6
Visualizacion de una neurona artificial con 3 entradas, en la que se representan
las entradas (z;), los pesos (w;), la suma ponderada y la funcién de activacién

() o 8
Representacién gréfica de las funciones de activacion sigmoide (negro), tan-
gente hiperbdlica (rojo), ReLU (azul), SILU (naranja) y softplus (rosa) 9
Red neuronal con 3 neuronas de entrada (verde), 4 neuronas ocultas (azul) y
2 neuronas de salida (rojo)o 9
Representacion visual de una capa densa con n entradas y m salidas, siendo
w; los pesos de cada neurona y o la funciéon de activacién de la capa 10
Representacion grafica de una convoluciéon discreta 2D, cuyos operandos y
resultado son matrices bidimensionales 0L L. 11
Visualizacion de una operaciéon de Max Pooling bidimensional, con regiones de
tamano 2 X 2 Lo e e e e e 12

Comparacion del célculo de una salida de una capa densa MLP (a) con el
de una capa densa KAN (b). Hagase notar que en la capa densa MLP la no
linearidad (o) se procesa después de la suma, mientras que en la capa KAN
las no linealidades (¢1, ..., ¢n,i) se procesan antes de la suma 25
Comparacion de la estructura de una capa densa de una red MLP (a) con una
capa densa de una red KAN (b). En las capas densas MLP primero se suma
y luego se aplica la funcién no lineal (o), mientras que en las KAN primero se

aplican funciones no lineales a todas las entradas (¢1,e, ..., ¢ne) y después se
suman los resultados obtenidos L. 26
Representacién de una convolucién KAN 2D 27
Ejemplo de una spline uniforme en el que se han representado las funciones
base de orden 3 de la spline (By s, ..., Bs3; en varios colores), junto a la spline

resultante al combinar todas estas funciones base (S, en negro), utilizando
los valores «; = (0.5,1.5,2.5,1.5,0.5,1.5,2.5,1.5,0.5,1.5) para combinar las
funciones base. La spline tiene nodos en 0,0,0,0,1,2,3,4,4,4,4 y es de orden 3 28
Spline uniforme de orden 3 aproximando sincx en el intervalo [O, 27r], repre-
sentando la spline final junto con todas las funciones base (Bygs, ..., Bi73)
multiplicadas por su valor correspondientes («,...,a17). Los valores de los
nodos, distribuidos uniformemente en el intervalo [0, 277], se han representado
como lineas verticales grises 29
Funciones base de orden 0 (a), orden 1 (b), orden 2 (c¢) y orden 3 (d) para una
spline uniforme de orden 3, con nodos 0,0,0,0,1,2,3,4,4,4,4 30

ix

fNDICE DE FIGURAS

3.7 Representacién visual del proceso de grid extension, mostrando la transfor-
macién de una spline con G (tamafio de la grid) = 5 a una con G = 10. La
spline original tiene 7 funciones base, mientras que la spline expandida tiene
12 funciones base e

3.8 Error de entrenamiento (train) y de generalizacién (test) de una red KAN
entrenada con grid extension en intervalos fijos, mostrando en rojo el punto en
el que el modelo genera el menor error de test. Se puede ver como, aunque al
aumentar el tamano de la grid el error de entrenamiento siempre disminuye,
para el error de generalizacién si que existe un punto 6ptimo en el que deja de
disminuir y empieza a aumentaro

3.9 KAN entrenada para aproximar la funcién esin(me1) 73 Como se puede ver, la

red ha aprendido la estructura de la funcién, habiendo obtenido una funcién
con forma de sin(7z) para 1, otra con forma de x? para z2, y una con forma
de e” para la suma de ambas funciones anteriores. La opacidad de las funciones
indica la escala de cadauna oo

3.10 Regresién simbdlica para una red KAN entrenada para aproximar la funcién
esin(re1)+a3 9 opacidad de cada funcién indica la escala de la funcién

3.11 Entrenamiento por fases de una red KAN y MLP. En cada fase las redes se
han entrenado con una parte de los datos. Como se puede ver, la red MLP
olvida los datos de las fases anteriores, mientras que la red KAN es capaz de
mantenerlos y asi aprender correctamente el patrén de todos los datos

5.1 Muestras de imagenes de cada una de las 10 clases del dataset MNIST

5.2 Muestras de imagenes de cada una de las 10 clases del dataset CIFAR-10,
incluyendo (de izquierda a derecha) imégenes de aviones, coches, pajaros, gatos,
ciervos, perros, ranas, caballos, barcos y camiones, que son las 10 clases de
imédgenes del conjunto de datoso

5.3 Estructura de las redes CNN utilizadas en los experimentos, con las partes
entrenables del modelo en azul y la entrada/salida de datos en naranja. El
modelo es una red convolucional bastante estandar, con dos capas convolu-
cionales, dos capas densas, funciones de activaciéon ReLLU, Max Pooling y una
capa de Dropout L

5.4 Estructura de las redes Conv-KAN utilizadas en los experimentos, con las
partes entrenables en azul y la entrada/salida en naranja. Es una adaptacién
de la estructura de la figura 5.3 para el uso de capas KAN, necesitando la
eliminacién de la capa dropout y de las funciones de activacién

5.5 Resultados del experimento de eficiencia respecto al niimero de parametros
para el dataset MNIST, en términos de tasa de aciertos (a) y f-score (b) frente
al niimero de parametros de los modelos entrenados de las arquitecturas CNN
y Conv-KAN o

5.6 Resultados del experimento de eficiencia respecto al niimero de parametros
para el dataset CIFAR-10, en términos de tasa de aciertos (a) y f-score (b)
frente al niimero de pardmetros de los modelos entrenados de las arquitecturas
CNN y Conv-KAN e

41

o4

fNDICE DE FIGURAS

xi

5.7

5.8

5.9

5.10

5.11

0.12

Resultados obtenidos para el dataset MNIST en el experimento de eficiencia
respecto a la cantidad de datos de entrenamiento, mostrando el rendimiento de
los modelos obtenidos en términos de tasa de aciertos (a) y f-score (b) frente
al porcentaje de datos utilizado durante el entrenamiento
Resultados obtenidos para el dataset CIFAR-10 en el experimento de eficiencia
respecto a la cantidad de datos de entrenamiento, mostrando el rendimiento de
los modelos obtenidos en términos de tasa de aciertos (a) y f-score (b) frente
al porcentaje de datos utilizado durante el entrenamiento
Gréficas que visualizan los resultados del experimento de calibracion para el da-
taset MNIST, mostrando las curvas de calibracién obtenidas para cada modelo
junto con la cantidad de muestras que pertenecen a cada intervalo, tras agru-
par las muestras en 5 grupos, con intervalos de confianzas 0 — 20%, 20 — 40%,
40—60%, 60—80% y 80 —100%. En la gréfica de curvas de calibracién también
se muestra la linea de calibracion éptima, en la que la tasa de aciertos media
de un modelo coincide con la confianza producida
Graficas que visualizan los resultados del experimento de calibracion para el
dataset CIFAR-10, mostrando las curvas de calibraciéon obtenidas para cada
modelo junto con la cantidad de muestras que pertenecen a cada intervalo,
tras agrupar las muestras en 5 grupos, con intervalos de confianzas 0 — 20%,
20—40%, 40—60%, 60—80% y 80—100%. En la grafica de curvas de calibracién
también se muestra la linea de calibraciéon 6ptima, en la que la tasa de aciertos
media de un modelo coincide con la confianza producida
Visualizacién de los resultados obtenidos en el experimento de aprendizaje
continuo para el conjunto de datos MNIST para cada uno de los modelos
entrenados. Los resultados se han visualizado en términos de tasa de aciertos
(a) y de f-score (b) para cada una de las 5 fases de entrenamiento descritas en
latabla 5.11 L e
Visualizacién de los resultados obtenidos en el experimento de aprendizaje
continuo para el conjunto de datos CIFAR-10 para cada uno de los modelos
entrenados. Los resultados se han visualizado en términos de tasa de aciertos
(a) y de f-score (b) para cada una de las 5 fases de entrenamiento descritas en
latabla 5.11 e

Indice de tablas

2.1

3.1

5.1

5.2

5.3

5.4

9.5

Relacion entre la prediccién y y el valor verdadero g respecto a una clase k.
Muestra como se definen los verdaderos positivos, verdaderos negativos, falsos
positivos y falsos negativos para la clase k a partir de la prediccién y el valor
verdadero L L e e

Comparacion de la estructura de las redes MLP con las redes KAN, mostrando
las funciones no-lineales en azul, los parametros entrenables lineales en rojo, y
los parametros entrenables no-lineales en morado

Arquitecturas Conv-KAN y CNN entrenadas para realizar el experimento de
eficiencia de parametros, siendo C; la cantidad de filtros de la primera capa
convolucional, Cy la cantidad de filtros de la segunda capa convolucional y D
la cantidad de neuronas de la primera capa densa. Las capas convolucionales
y densas de los modelos Conv-KAN utilizan los valores predeterminados para
el tamano de grid, utilizando todas una grid uniforme. Los modelos tienen
cantidades diferentes de pardmetros para MNIST que para CIFAR-10, ya que
las imagenes de MNIST son de distinto tamano que las de CIFAR-10, y las
imagenes de CIFAR-10 son en color RGB mientras que las de MNIST son en
blanco y negro L
Resultados obtenidos para el dataset MNIST en el experimento de eficiencia
respecto al nimero de parametros tras entrenar los modelos descritos en la
tabla 5.1. Los mejores resultados en términos de tasa de aciertos y de F-score
estdn en megrita L. L e e e
Resultados obtenidos para el dataset CIFAR-10 en el experimento de eficiencia
respecto al ntimero de parametros tras entrenar los modelos descritos en la
tabla 5.1. Los mejores resultados en términos de tasa de aciertos y de F-score
estdn en nmegrita L L. L L
Arquitecturas Conv-KAN y CNN entrenadas para realizar el experimento de
eficiencia de datos de entrenamiento, siendo C7 la cantidad de filtros de la
primera capa convolucional, C5 la cantidad de filtros de la segunda capa con-
volucional, y D la cantidad de neuronas de la primera capa densa
Resultados obtenidos para el dataset MNIST en el experimento de eficiencia
respecto al nimero de datos de entrenamiento, tras entrenar los modelos des-
critos en la tabla 5.4 con un 5, 10, 25, 50, 75 y 100% de las muestras del
conjunto de datos de entrenamiento. Los mejores resultados en términos de
tasa de aciertos y f-score para cada porcentaje de datos de entrenamiento se
han resaltado en negrita Lo

xiii

Xiv

INDICE DE TABLAS

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

Resultados obtenidos para el dataset CIFAR-10 en el experimento de eficien-
cia respecto al nimero de datos de entrenamiento, tras entrenar los modelos
descritos en la tabla 5.4 con un 5, 10, 25, 50, 75 y 100% de las muestras del
conjunto de datos de entrenamiento. Los mejores resultados en términos de
tasa de aciertos y f-score para cada porcentaje de datos de entrenamiento se
han resaltado en negrita L
Arquitecturas Conv-KAN y CNN entrenadas para realizar el experimento de
calibracién, siendo C1 la cantidad de filtros de la primera capa convolucional,
(5 la cantidad de filtros de la segunda capa convolucional, y D la cantidad de
neuronas de la primera capa densa,
Resultados obtenidos en el experimento de calibracién para el dataset MNIST,
mostrando el ECE obtenido de cada modelo junto con la tasa de aciertos
obtenida respecto a la probabilidad predecida media. Para el calculo del ECE
y de la tasa de aciertos respecto a la confianza se han agrupado las muestras en
5 grupos, con intervalos de confianzas 0 — 20%, 20 — 40%, 40 — 60%, 60 — 80%
y 80 —100%. Las celdas vacias de la tabla indican que no hay ninguna muestra
en su intervalo de confianza para el modelo correspondiente
Resultados obtenidos en el experimento de calibracién para el dataset CIFAR-
10, mostrando el ECE obtenido de cada modelo junto con la tasa de aciertos
obtenida respecto a la probabilidad predecida media. Para el calculo del ECE
y de la tasa de aciertos respecto a la confianza se han agrupado las muestras en
5 grupos, con intervalos de confianzas 0 — 20%, 20 — 40%, 40 — 60%, 60 — 80%
y 80 —100%. Las celdas vacias de la tabla indican que no hay ninguna muestra
en su intervalo de confianza para el modelo correspondiente
Modelos Conv-KAN y CNN utilizados para el experimento de aprendizaje
continuo, siendo C7 la cantidad de filtros de la primera capa convolucional,
(5 la cantidad de filtros de la segunda capa convolucional, y D la cantidad de
neuronas de la primera capa densa
Clases utilizadas para el entrenamiento y evaluacion en cada fase para el expe-
rimento de aprendizaje continuo. En cada fase se ha entrenado el modelo con
dos clases no vistas anteriormente, y se ha evaluado el modelo con todas las
clases de esa fase y de las fases anteriores, de forma que al llegar a la dltima
fase el modelo se evalia con todas las clases
Resultados obtenidos en el experimento de aprendizaje continuo para el con-
junto de datos MNIST tras cada una de las 5 fases de entrenamiento descritas
en la tabla 5.11. Los mejores resultados obtenidos en términos de tasa de acier-
tos y de f-score para cada fase de entrenamiento estdn en negrita
Resultados obtenidos en el experimento de aprendizaje continuo para el con-
junto de datos CIFAR-10 tras cada una de las 5 fases de entrenamiento des-
critas en la tabla 5.11. Los mejores resultados obtenidos en términos de tasa
de aciertos y de f-score para cada fase de entrenamiento estan en negrita . . .

70

Indice de cédigos

4.1 Funciones auxiliares utilizadas en la implementacién propia de redes KAN, que
definen las funcién base utilizada (SiLU), su derivada y la funcién zdiv, que
implementa la divisién de dos nimeros pero devuelve 0 cuando el divisor es 0,
y se utiliza para implementar las férmulas de Cox-de Boor

4.2 (Cdbdigo utilizado en la implementacién propia de las redes KAN para calcular
el caso base de la férmula recursiva Cox-de Boor, utilizado para el calculo de
las splines de lared KAN

4.3 Cobdigo utilizado para el calculo completo de las funciones base de las splines.
El codigo calcula de forma iterativa la féormula de Cox-de Boor, utilizando
un bucle para calcular cada uno de los 6rdenes de la spline. Calcula también
ciertas variables auxiliares utilizadas para calcular las derivadas de las splines
posteriormente L. L Lo

4.4 Cobdigo completo del método spline() de la clase KANNeuron, responsable
de calcular todos los valores de splines de la clase. Incorpora el cédigo visto
anteriormente utilizado para implementar la férmula Cox-de Boor, y a partir
de eso calcula las funciones base (self.bases), las derivadas de las funciones base
(self.bases_d), el valor de la spline (self.s) y el valor de la derivada de la spline
(selfis d) . . o oo

4.5 Cobdigo del método train() de la clase KANNeuron, responsable de actualizar
todos los coeficientes de la spline (self.coefs) y los pesos (self.wb y self.ws) a
partir del vector de deltas y de la learning rate recibida

4.6 Cobdigo completo de la clase KANNeuron utilizada en la implementacién propia
delasredes KAN

4.7 Cobdigo del método call () de la clase KANLayer, que calcula el resul-
tado de una capa KAN. Calcula los resultados parciales de todos los objetos
KANNeuron internos a la capa KAN, y devuelve el resultado correspondiente.
También comprueba que las dimensiones de los datos de entrada y de salida
producidos son correctas, utilizando el método assert() de Python.

4.8 Cobdigo del método train() de la clase KANLayer, que actualiza todos los pesos
de la capa KAN dados los deltas y la learning rate llamando al método train de
todos los objetos KANNeuron internos. Ademas, calcula y devuelve los deltas
de la capa anterior de la red para poder realizar backpropagation utilizando
el resultado devuelto por la funcién, comprobando que las dimensiones de los
deltas de entrada y salida son correctas.

4.9 Cobdigo completo de la clase KANLayer utilizada en la implementacién propia
de lasredes KAN.

4.10 Cédigo completo de la clase KAN utilizada en la implementaciéon propia de
redes KAN.

XV

1 Introduccion

La inteligencia artificial es uno de los campos de la informéatica que méas se ha desarrollado
recientemente, especialmente al tener en cuenta el crecimiento explosivo que ha tenido en los
ultimos afios. Hace tan solo unas pocas décadas, la inteligencia artificial era un campo muy
limitado, utilizado inicamente en ciertas aplicaciones de forma muy puntual. No obstante,
gracias al tremendo desarrollo del hardware informéatico que ha ocurrido desde entonces y al
consecuente progreso de las técnicas de machine learning, hoy en dia la inteligencia artificial se
ha convertido en una parte fundamental de la informatica. Gracias al desarrollo de modelos
avanzados de machine learning, se han conseguido grandes avances en la clasificacion de
imégenes [1], el procesamiento de lenguaje natural [2] y la deteccién de objetos [3], junto con
una innumerable cantidad de otras tareas.

Actualmente, practicamente todos los modelos de machine learning complejos estdn ba-
sados en redes neuronales artificiales. Esto es principalmente por la capacidad de las redes
neuronales artificiales de poder aproximar casi cualquier funcién matematica dados los sufi-
cientes pardametros, cosa que hace que se puedan aplicar en una gran variedad de problemas
y situaciones. Es gracias a esta increible flexibilidad y adaptabilidad que las redes neuronales
artificiales se han convertido en un pilar del machine learning y de la inteligencia artifi-
cial actuales. El diseno de las redes neuronales artificiales estd basado en la combinacién de
transformaciones lineales con parametros variables junto con transformaciones no-lineales fi-
jas. Repitiendo esta combinacién varias veces, las redes neuronales son capaces de aproximar
de forma eficiente una gran variedad de funciones matematicas complejas, necesitando variar
tnicamente los pardmetros de sus transformaciones lineales [4].

No obstante, recientemente ha surgido una alternativa a esta combinacién de transforma-
ciones lineales y no-lineales: las redes Kolmogérov-Arnold, o Kolmogorov-Arnold Networks
(KAN) en inglés. Esta arquitectura novedosa, basada en el teorema de representacién de
Kolmogérov-Arnold [5], establece una alternativa a la estructura tradicional de las redes neu-
ronales, y hace posible tener transformaciones no-lineales con parametros variables. Las redes
KAN tienen el potencial de mejorar ciertos aspectos de las redes neuronales, como su inter-
pretabilidad, fiabilidad o capacidad de realizar tareas de aprendizaje continuo, ademas de
mejorar la precision de los modelos en ciertas tareas [6].

Para la realizacién del trabajo se ha analizado la estructura y el funcionamiento de las
redes KAN, prestando especial atencién al articulo cientifico que las propuso en 2024 [6] y
a otras publicaciones relacionadas. Se ha explicado esta novedosa arquitectura desde cero,
centrandose especialmente en como se diferencian las redes Kolmogérov-Arnold de las redes
neuronales ya establecidas. También se han explorado las diferencias que existen a la hora
de entrenar y ejecutar este tipo de arquitecturas, junto con las ventajas, desventajas y limi-
taciones respecto a las redes neuronales tradicionales. A partir de esto, se ha elaborado una
implementacion desde cero en Python de este tipo de redes, con el fin de mostrar una forma
de implementar este tipo de redes y de apoyar la explicacion de las mismas.

INTRODUCCION

Ademas, se han realizado multiples experimentos en los que se compara el rendimiento
de las redes KAN convolucionales con el de las redes CNN tradicionales, utilizando una es-
tructura convolucional KAN derivada de las capas convolucionales de las redes CNN (ver
apartado 3.2.1). Se han realizado experimentos para comparar la eficiencia de las redes res-
pecto al nimero de parametros (apartado 5.3), la eficiencia respecto al nimero de datos de
entrenamiento (apartado 5.4), la calibracién de los modelos entrenados (apartado 5.5) y la
calidad de los resultados obtenidos al realizar aprendizaje continuo por fases (apartado 5.6).
La metodologia concreta de todos los experimentos se describe en sus respectivos apartados.

1.1

Objetivos

Este trabajo tiene los siguientes objetivos concretos:

1.2

Hacer una revision de la base teédrica de las redes KAN: Explicar claramente
las redes KAN, ademés de todos los conocimientos necesarios de machine learning y
inteligencia artificial necesarios para comprender el funcionamiento de las redes KAN,
prestando especial atencién a las diferencias principales entre las redes neuronales tra-
dicionales y las redes KAN

Hacer una implementacién propia de un modelo KAN: Realizar una implemen-
tacién en Python de una arquitectura KAN bésica, intentando implementar todos los
componentes esenciales desde cero, con el fin de mostrar como se podria llegar a realizar
una de estas implementaciones.

Evaluar y comparar el rendimiento ante alternativas: Realizar experimentos
para intentar medir las propiedades de las redes KAN, comparando los resultados obte-
nidos con las redes neuronales tradicionales. Se ha decidido realizar estos experimentos
comparando las redes KAN convolucionales con las redes CNN (redes convoluciona-
les tradicionales), dada la relativa escasez de experimentos que utilizan las redes KAN
convolucionales y comparan los resultados con redes CNN.

Hacer un analisis de ventajas y limitaciones de las redes KAN: Realizar una
andlisis de las ventajas y desventajas actuales de las arquitecturas KAN, prestando
especial atencién a las posibles aplicaciones de las redes KAN y a sus ventajas respecto
a las arquitecturas contemporaneas de machine learning

Proponer lineas futuras de investigacién: Proponer futuras lineas de investigacién
relacionadas con las redes KAN, haciendo énfasis en las lineas de investigaciéon mads
prometedoras o que tengan mayor utilidad para el machine learning y la inteligencia
artificial

Estructura del trabajo

A continuacion se describe la estructura del trabajo, junto con un breve resumen del contenido
de cada capitulo.

1.2. ESTRUCTURA DEL TRABAJO 3

e Capitulo 1 - Introduccién: introduccién al trabajo, explicando el propdsito del tra-
bajo, los objetivos concretos y la estructura del mismo

e Capitulo 2 - Inteligencia artificial: introduccién de los conceptos fundamentales de
machine learning y de inteligencia artificial, donde se explican las ideas necesarias para
entender el resto del trabajo. Se presta especial atencion a las técnicas y arquitecturas
mencionadas en la explicacién las redes KAN o que han sido utilizadas para realizar los
experimentos.

e Capitulo 3 - Redes Kolmogoérov-Arnold: explicacién detallada de las redes KAN,
describiendo todo el fundamento matemético que las acompaiia, haciendo énfasis en las
diferencias entre las redes KAN y las redes neuronales tradicionales

e Capitulo 4 - Implementaciéon en Python: implementacién en Python desde cero
de las redes KAN, junto con una explicacién detallada del cédigo de las funciones
principales utilizadas en la implementaciéon

e Capitulo 5 - Experimentos: se detallan y describen los experimentos realizados para
establecer las propiedades de las redes KAN convolucionales y comparar el rendimiento
con el de las redes convolucionales ya establecidas.

e Capitulo 6 - Conclusiones: las conclusiones de todo el trabajo, incluyendo un resu-
men de los resultados obtenidos en los experimentos y las futuras lineas de investigacién
propuestas

2 Inteligencia artificial

Para poder entender de forma correcta el funcionamiento de las redes KAN, primero es
necesario establecer ciertos conceptos fundamentales del campo de inteligencia artificial. En
este apartado del trabajo se ha realizado una breve introduccién de muchos de estos conceptos
necesarios para entender las redes neuronales actuales, entrando especificamente en el detalle
de algunas de las técnicas y arquitecturas en las que estan basadas las redes KAN, y que
seran necesarias para entender los consecuentes apartados de este trabajo.

El campo de la inteligencia artificial se dedica a la resolucién de una gran cantidad de
problemas, como la clasificacién de imégenes [1], el procesamiento de lenguaje natural [2] o la
deteccién de objetos [3], entre muchos otros. Mediante el uso de ciertos mecanismos y procesos
que se veran méas adelante, es posible ajustar los parametros de un modelo de machine learning
de tal forma que los resultados del modelo se aproximen los resultados necesarios para resolver
la tarea buscada, de forma que el modelo sea capaz de reconocer patrones tan complejos y/o
numerosos que su implementacién mediante programacién tradicional se vuelve inviable [4].
Este proceso de ajustar los parametros de un modelo con el fin de que el modelo resultante
resuelva una tarea se conoce como el entrenamiento de un modelo.

En la inteligencia artificial existen muchos tipos de tareas, cada una con su conjunto de
técnicas y arquitecturas asociados. No obstante, es comun clasificar las tareas de inteligencia
artificial en 3 tipos generales:

o Aprendizaje supervisado: consiste en proveer al modelo de muchos ejemplos con las
salidas esperadas para cada ejemplo. A partir de estos ejemplos, el modelo es capaz
de ir disminuyendo el error de salida y pasa, poco a poco, a ir prediciendo cada vez
mejor los resultados a partir del conjunto de datos del que se extrajeron los ejemplos.
A la que aumenta la complejidad de los patrones que se quieren aprender o la precisién
necesaria, se requieren mas y mas datos, cosa que aumenta también el tiempo de entre-
namiento del modelo. Ademads, si no se proveen de suficientes datos o los datos no son
de suficientemente buena calidad, se pueden obtener resultados subéptimos a la hora
de entrenar el modelo [7].

e Aprendizaje no supervisado: para entrenar un modelo utilizando aprendizaje no super-
visado, necesitamos proveer de ejemplos pero no necesariamente sus correspondientes
salidas. En este tipo de aprendizaje el modelo extrae patrones de los datos mediante el
andlisis de patrones o de semejanzas entre los datos. Aunque construir un conjunto de
datos para este tipo de aprendizaje es méas sencillo, extraer informacién 1til no es tan
simple como para el aprendizaje supervisado, ya que muchas veces los resultados van a
ser mas dificiles de interpretar y aprovechar [8].

o Aprendizaje por refuerzo: a diferencia que con los otros dos tipos de aprendizaje, el
modelo no recibe ningin conjunto de datos. Aprende mediante la interaccién con el

6 INTELIGENCIA ARTIFICIAL

entorno, siendo recompensado o penalizado dependiendo de las acciones que tome y
sus consecuencias. Estos algoritmos son especificos a un problema concreto, y necesitan
una funcién de recompensa bien disefiada para que el modelo aprenda a interactuar
con el entorno de la forma que se espera. Mediante prueba y error el modelo poco a
poco aprende las acciones que obtienen la mayor recompensa para el entorno, y de esta
forma va optimizando sus interacciones para obtener la recompensa maxima [9].

A dia de hoy, la gran mayoria de arquitecturas de inteligencia artificial estan basadas en redes
neuronales [10]. Este tipo de arquitecturas estan formadas por neuronas artificiales, que son
nodos en un grafo computacional que calculan un valor a partir de sus conexiones a otras
neuronas artificiales de la red. Estas redes de neuronas estaban inspiradas originalmente en
las redes neuronales bioldgicas encontradas en el cerebro, e imitan de forma muy simplificada
como las neuronas en el tejido cerebral estdan conectadas entre ellas [11].

En los siguientes apartados se procede a explicar el funcionamiento de las redes neuronales
y su entrenamiento mediante el uso del aprendizaje supervisado. Primero se abordaran ciertos
casos simples, como el funcionamiento de una tinica neurona artificial, y se desarrollara paso
a paso la teoria necesaria para entender como funciona una red en su totalidad. Ademds, se
abordardn con especial detalle los conceptos necesarios para entender las redes KAN, que se
trataran en los apartados siguientes.

Durante todo este trabajo ha sido necesario representar una gran variedad de modelos
computacionales. Para representar estos modelos se ha utilizado un grafo que muestra el flujo
de datos del modelo, en concordancia con el formato representado en la figura 2.1.

Entradas Procesamiento Salidas

Figura 2.1: Representacién de un modelo computacional como un grafo, con entradas (verde), nodos
de procesamiento (azul) y nodos de salda (rojo). Las aristas del grafo indican el flujo de
datos del modelo. Fuente: elaboracién propia

2.1 Funcioén objetivo

Antes de poder empezar a explicar el funcionamiento de las redes neuronales, es necesario
concretar exactamente el objetivo a la hora de utilizar este tipo de estructuras. De forma
muy simplificada, al entrenar un modelo mediante aprendizaje supervisado lo que se intenta
es aproximar una funcién objetivo f* : R" — R™, que define el comportamiento que es
deseable que el modelo muestre. Por ejemplo, una funcién objetivo podria ser: dados los
pixeles RGB de una imagen decir si es una imagen de un gato o de un perro. Si las imagenes
de entrada son de 25 - 25 pixeles, podriamos codificar la funcién como f* : R?>253 — {0 1},
siendo una salida de 0 una imagen de un gato y una salida de 1 una imagen de un perro. Otras
funciones pueden ser mucho méas complejas de modelar, hasta el punto de que en algunos casos
puede ser necesario utilizar una aproximacion, ya que la funciéon objetivo puede ser inviable

2.2. NEURONAS ARTIFICIALES 7

o imposible de definir exactamente [12].

Aunque muchas funciones objetivo son faciles de describir informalmente, producir un
algoritmo que compute estas funciones mediante programacion tradicional es practicamente
imposible. No obstante, lo que si que es viable es producir ejemplos concretos de la funcién. De
forma simplificada, es necesario recopilar muchas parejas de valores de entrada x; y valores de
salida y;, de forma que los valores de salida correspondan a la funcién objetivo (y; = f*(z;)),
o que al menos aproximen la salida correcta (y; ~ f*(x;)) si no se pueden conseguir resultados
exactos. Siguiendo el ejemplo ya establecido, seria necesario conseguir muchas imégenes RGB
de 25 - 25 pixeles de gatos (en cuyo caso su y; = 0) y de perros (en cuyo caso su y; = 1).

El objetivo del aprendizaje supervisado es que, mediante el uso de todos estos ejemplos, se
obtenga un modelo que se pueda ir modificando poco a poco para que produzca resultados
que se aproximen m&s y mas a los ejemplos del conjunto de datos. Si los datos seleccionados
son representativos y se evitan ciertos problemas que pueden ocurrir durante el entrenamiento
[7], se espera que, a partir del conjunto finito de ejemplos el modelo resultante produzca una
salida f que aproxime la funcién objetivo f* para todas las posibles entradas z; (f(z) =~
f*(z) Ve € R™).

La calidad de los resultados obtenidos tras el entrenamiento puede variar tremendamente,
yva que depende de muchos factores que tienen que ser analizados en detalle. Estos factores
incluyen la cantidad y calidad de los datos utilizados, la complejidad de la funcién objetivo y
el diseno del modelo de machine learning entre muchos otros. Para obtener resultados buenos
se tienen que tener en cuenta muchos de estos factores y realizar pruebas frecuentes que
evalien los resultados obtenidos. La evaluacion de los modelos después del entrenamiento se
estudia en detalle en el apartado 2.5.

2.2 Neuronas artificiales

En el contexto de las redes neuronales artificiales, una neurona es un tnico nodo de la red,
que tiene varias entradas de datos y produce una tnica salida a partir de estas entradas. La
neurona calcula el valor de salida realizando una suma ponderada de las entradas, multipli-
cando cada entrada por su peso correspondiente. Ademaés, también se anade al resultado un
valor que no se multiplica por ninguna salida, al que se le llama bias o sesgo.

El resultado de esta suma, que se conoce como la activacion de la neurona, se pasa por la una
funcién no-lineal, con la finalidad de que las neuronas no sean transformaciones lineales de las
entradas, ya que entonces la red neuronal no seria capaz de representar funciones no-lineales.
Estas funciones no-lineales son las funciones de activacion, y son una parte fundamental de
las redes neuronales artificiales [13].

Sea o la funcién de activacién, x las entradas, w los pesos y b el bias, podemos representar
matematicamente el resultado de la funcién con la férmula siguiente:

y=o (b + i wm) (2.1)

i=1
Para simplificar la ecuacién anterior, normalmente se anade una “entrada” xy cuyo valor

es siempre 1, y se utiliza wg como el bias. Aunque el resultado es el mismo, la ecuacién se
simplifica bastante, por lo que es preferible utilizar la forma simplificada:

8 INTELIGENCIA ARTIFICIAL

n
=0

Visualmente, podemos representar la ecuacion anterior de la siguiente forma:

o

3
Figura 2.2: Visualizaciéon de una neurona artificial con 3 entradas, en la que se representan las

entradas (x;), los pesos (w;), la suma ponderada y la funcién de activacién (o). Fuente:
elaboracién propia

Esta es la formula més bésica para las neuronas artificiales. Existen muchas otras variantes
de esta formula que se utilizan en ciertos contextos especificos.

2.2.1 Funciones de activacion

Existen muchas funciones de activacién utilizadas en modelos de redes neuronales, teniendo
cada una ciertas ventajas y desventajas que hay que tener en cuenta. La gran mayoria son
funciones no lineales, que se utilizan para hacer que la salida de la neurona deje de tener una
relacion lineal con las entradas. Esto es particularmente importante al considerar como una
red neuronal encadena varias neuronas entre si, ya que sin el uso de funciones no lineales una
red neuronal solo es capaz de producir salidas lineales a sus entradas, y por lo tanto no seria
util a la hora de aproximar una gran cantidad de funciones objetivo [13]. A continuacién se
pueden ver algunos ejemplos de funciones de activacién cominmente utilizadas:

o Lineal: o(x) =z

o Sigmoide: o(z) =1/(1+¢77)

o Tangente hiperbdlica: o(z) = tanh(x)
o ReLU: o(z) = max(0, x)

o SiLU: o(z) =x/(1+e7%)

o Softplus: o(z) = In(1 + €*)

2.3. REDES NEURONALES ARTIFICIALES 9

2

1 [
—1/(1+e™)

0 — tanh(xz) ||
— max(0, z)

z/(1+e™ %)
— In(1 +€%)
_1 | | | | | | I
—4 -3 -2 -1 0 1 2 3 4

Figura 2.3: Representacién grafica de las funciones de activacién sigmoide (negro), tangente hiper-
bélica (rojo), ReLU (azul), SiILU (naranja) y softplus (rosa). Fuente: elaboracién propia

2.3 Redes neuronales artificiales

Una red neuronal es un conjunto de neuronas artificiales conectadas entre si. Las primeras
neuronas de la red, que no dependen de la salida de ninguna otra neurona, reciben directa-
mente su valor. Es mediante estas neuronas que se le pasan los datos de entrada a la red.
Estas neuronas se conocen como las neuronas de entrada de la red. De forma andloga, las
ultimas neuronas de la red son las neuronas de salida. Las neuronas de salida no tienen nin-
guna neurona conectada a su salida, y su valor calculado es uno de los valores de salida de la
red.

Figura 2.4: Red neuronal con 3 neuronas de entrada (verde), 4 neuronas ocultas (azul) y 2 neuronas
de salida (rojo). Fuente: elaboracién propia

Por razones tanto de eficiencia como de funcionalidad, en una red neuronal las neuronas se
suelen agrupar en capas. Generalmente, todas las neuronas de una capa se comportan de la
misma forma, y se conectan con otras capas de forma similar. Ademas, todas las neuronas
de la misma capa suelen tener la misma funcién de activacién y los mismos parametros de
configuracién. De esta forma, es posible disefiar grandes redes neuronales con miles o millones

10 INTELIGENCIA ARTIFICIAL

de neuronas sin tener que especificar la funcién de activacion, las conexiones o los parametros
de configuracién de cada una de las neuronas de la red. Las capas que contienen las neuronas
de entradas son las capas de entrada, las que contienen las neuronas de salida son las capas
de salida y el resto de capas son las capas ocultas.

2.3.1 Capas densas

La capas de neuronas mas bésicas son las capas densas, también conocidas como Fully Con-
nected Layers, o capas completamente conectadas. En este tipo de capas cada neurona de
la capa estd conectada a todas entradas recibidas por la capa. Un ejemplo visual de una de
estas capas se puede ver en la figura 2.5.

1 -
Ch—
r1 —
o
| o (Um

Figura 2.5: Representacion visual de una capa densa con n entradas y m salidas, siendo w; los pesos
de cada neurona y o la funcién de activacién de la capa. Fuente: elaboracién propia

Matematicamente, una capa densa se puede modelar a partir de la férmula 2.2 ya introducida
anteriormente. Sean x las salidas de la capa anterior y w;; el peso w; de la neurona j de la
capa, se calcula la salida y de cada neurona de la siguiente formas:

yj=o0 sz‘jﬂﬁi (2.3)
i
Al tratar w y = como vectores, es posible simplificar la ecuacion:
1
I -
yi=o | [wo; ... wpyy] : =0 (w.ja:) (2.4)

Tn

A partir de esto, también se es posible definir el comportamiento de toda la capa densa
utilizando una sola ecuacién:

1
U1 woeo ... Wno
X1
y=|:|=0 oo | =o(we) (2.5)
Ym Wom .- Wnm xn

Para que los calculos de las ecuaciones 2.4 y 2.5 sean equivalentes a los de la ecuacién 2.3

2.3. REDES NEURONALES ARTIFICIALES 11

es necesario transponer la matriz de pesos w. Ademaés, en concordancia con la simplificacién
realizada en la ecuacién 2.2, z¢p = 1 para todas las ecuaciones anteriores, ya que wq; es el
sesgo de cada una de las neuronas de la capa.

Una vez obtenida la férmula para calcular la salida de una capa densa, podemos calcular
la salida de toda una red. Esto se puede hacer calculando la salida de la primera capa de la
red a partir de las entradas de la red, y luego utilizando las salidas de la primera red como
las entradas de la siguiente capa. A partir de esto, podemos ir encadenando todas las capas
de la red, hasta llegar a la salida de la dltima capa, que representa la salida de la red entera.

Sean w,...,w; los pesos de cada capa de la red, o1,...,0; las funciones de activacion de
cada capa de la red, y ®;(z) = o;(w]), se obtiene la siguiente férmula para calcular todos
los pesos de la red, siendo ®; la funciéon que representa cada una de las capas de la red:

y=® 0P 10--0Py0®P (1)

:0'[<’u}2- O'Q(’U); al(w-lr))) (2.6)

2.3.2 Capas convolucionales

Cuando estamos tratando con objetos que contienen una gran cantidad de informacién es-
tructurada, como imagenes o ficheros de audio, se puede volver muy costoso utilizar capas
densas, ya que la cantidad de pesos requeridos crece muy rapidamente con el tamano de las
entradas. Por ejemplo, para imdgenes de 100 x 100 pixeles, tendriamos 10 000 neuronas para
la capa de entradas de la red. Para conectar una capa densa con esta cantidad de neuronas,
necesitariamos una matriz de pesos de 10000 x 10000 elementos. Para imagenes mas grandes,
este nimero se vuelve aiin mayor.

Para intentar reducir el coste computacional y a la vez explotar la estructura de los datos
recibidos se crearon las capas convolucionales [14]. Este tipo de capas, en vez de conectar todas
las neuronas entre si, hacen que solo puedan afectar a una salida las entradas “cercanas” a
esta salida. Esto es andlogo a como se calculan las convoluciones matemadticas discretas [15].

o[1]1]xTolo o]
olo[1[a]1]o]o] - _frfafslalt
olofol1[1]1 1]0]1 1]2}4]3]3
ofofof1][1]ofo] = [o]1]o] = [1T2]3]4]1
olo[1]1]o]ofo] ~~[x]o]1].-~" [1]3]3]1]1
o[1[1]o]o]o]0 3[3]1]1]0
1[1]o]olo]o]o0

x w T *xWw

Figura 2.6: Representacion grafica de una convolucion discreta 2D, cuyos operandos y resultado son
matrices bidimensionales. Fuente: [16]

Las entradas de las capas convolucionales tienen cierta forma, la cual depende de la estructura
de los datos de entrada:

o Datos 1D (ficheros de audio, series temporales, etc.): hay n posiciones de entrada,

12 INTELIGENCIA ARTIFICIAL

teniendo cada una s datos, por lo que recibimos una entrada de R"™*¢,

o Datos 2D (imdgenes): hay n x m posiciones de entrada, teniendo cada una s datos, por
lo que tenemos una entrada de R™*™*s,

o Datos 3D o superiores (videos, nubes de puntos 3D, etc.): hay n; x --- X n,, posiciones
de entrada, teniendo cada una s datos, por lo que tenemos una entrada de R™ > *"mX$,

Las capas convolucionales tienen kernels, que son estructuras matriciales que contienen to-
dos los pesos entrenables de la capa. Cada uno de estos kernels tiene el mismo ntmero de
dimensiones que los datos de entrada, aunque su tamano en cada una de estas dimensiones
depende del tamano de kernel elegido. Si tenemos una entrada de datos de forma n xm x sy
un tamano de kernel de p X ¢, entonces cada kernel tendra una forma de p x ¢ x s. El tamano
de kernel normalmente es un ntimero bastante pequefio comparado con las dimensiones de
entrada, siendo el valor mas comin 3 x 3. Podemos ver un ejemplo de un kernel 3 x 3 x 1 en
la figura 2.6, que es equivalente a realizar una convoluciéon discreta 2D con un operando de
tamano 3 x 3.

Las capas convolucionales también hacen uso de funciones de activacion, con el fin de que
el resultado producido por la capa no sea una combinacién lineal de sus salidas. Si no se
utilizasen funciones de activacion, al igual que para las capas densas, esto impediria que la
red sea capaz de representar funciones no-lineales y por lo la red no seria capaz de aprender
correctamente la gran mayoria de funciones objetivo [13].

Una vez establecida la forma de los kernels se pueden definir mateméticamente las salidas
producidas por una capa convolucional. Sea x € R?*™*$ Ia entrada, w* € RP*9%* los kernels
de la capa, a*b la convolucién discreta de a y b, y o la funcién de activacion, podemos definir
las salidas de una capa convolucional de la siguiente forma:

Yijk =0 ((x * wk)i,j> =0 |) Tirajibe Whpe (2.7)

a,b,c

Las redes convolucionales también hacen uso de capas de pooling, que las hacen mas re-
sistentes al ruido a la vez de que reducen el tamano de la red sin afectar demasiado a la
generalizacion de la misma. Estas capas, normalmente introducidas después de las capas con-
volucionales, generan valores dividiendo los datos en regiones y calculando un dnico valor
para cada region. Lo mas frecuente es, para cada region 2 x 2 quedarse con el valor maximo
(conocido como Maz Pooling) o el valor medio (Average Pooling) [17]. En la figura 2.7 se
puede ver un ejemplo de Max Pooling.

12 {20 (30 | O

8 [12| 2 | 0 | 2x2MaxPool | 20|30
34 | 70 | 37 | 4 112 | 37

112 (100 | 25 | 12

Figura 2.7: Visualizaciéon de una operacion de Max Pooling bidimensional, con regiones de tamano
2 x 2. Fuente: [18]

2.4. ENTRENAMIENTO 13

2.4 Entrenamiento

Hemos visto como calcular los valores de salida de una red neuronal. No obstante, para
que la red sea capaz de resolver problemas computacionales vamos a tener que entrenarla. El
entrenamiento de una red es el proceso de actualizar los pardmetros entrenables, de forma que
el resultado que produce la red se ajuste al resultado deseado. Estos parametros normalmente
son las matrices de pesos de las capas (w;), aunque dependiendo de la arquitectura de la red
y de las capas usadas pueden existir mas parametros modificables durante el entrenamiento.

Para poder entrenar una red, primero es necesario cuantificar el error que ha cometido.
El error F es simplemente lo lejos que estd cada salida producida por la red de la salida
esperada para ciertos datos de entrada. Para definir matematicamente el error, tenemos que
seleccionar la funcién de pérdida. Hay muchas funciones de pérdida, siendo una de las mas
simples la diferencia cuadrada entre la salida obtenida y la salida esperada:

E; = (y; — 4;)° (2.8)

La funciéon de pérdida define exactamente como estamos midiendo el error entre la salida
producida (y) y la salida esperada (7). Existen muchas otras funciones de pérdida [19], cada
una con sus usos, ventajas y desventajas.

2.4.1 Retropropagacion

Para actualizar los pesos de una red neuronal, es necesario calcular la derivada respecto al
error para cada parametro entrenable de la red. Una vez obtenida esta derivada, podemos
ajustar cada uno de los parametros utilizando la derivada obtenida de forma que el error de la
red se disminuya tras la actualizacion. Para calcular estas derivadas, normalmente se utiliza
retropropagacion (backpropagation en inglés), que es un algoritmo que permite propagar el
error desde las capas de salida hasta las capas de entrada para poder calcular las derivadas
de forma eficiente [20].

La siguiente secciéon explica el algoritmo de backpropagation. Para poder describirlo de
forma precisa, va a ser necesario primero definir la notacién que se ha utilizado. Se utilizaran
las siguientes variables durante la explicacién del algoritmo:

. :ci valores de entrada de la capa [.

. wéj: pesos de la capa [.

« 2!: notacién para (wl)T z!. Esto implica que 2! = (w!)T = w! =

e oy funcién de activacién de la capa .
o a': valores de salida de la capa [. a! = o7(2!)

« y: salida de la red. y = a”, siendo L la cantidad de capas de la red y, por lo tanto, el
indice de la 1ltima capa.

e ¢: salida esperada de la red.

e FE: error de la red

14 INTELIGENCIA ARTIFICIAL

o FE’ derivada del error de la red respecto a y, E' = OF /0y

La derivada que buscamos obtener para actualizar los pesos de la red es OE/ 8w§’ ; bara todos
los pesos de todas las capas de la red. Para poder calcular esta derivada de forma eficiente
para todas las capas definiremos un valor intermedio, llamado delta (4). Los deltas de una
capa son la derivada del error respecto a 2! (6} = E/9zt). A partir de estos valores, es muy
simple calcular la derivada de los pesos OF/ 8w§7 ;i

OE OF 02!

I~ a.l91
8wm 0z 8wi’j

= ola} (2.9)

Entonces, para calcular 0F/ 8w§ ; Unicamente necesitamos calcular 5f para todas las capas

de la red. Podemos calcular el delta de la tltima capa de la red (§7) a partir de E de forma
directa:

5L . 8EZ _ OE, 6(11[’ . 6E1 80‘L(ZlL)
L 8ziL N 8aiL GziL - Oy 8ziL

Los deltas del resto de capas de la red se pueden calcular a partir de los deltas de la capa
siguiente de la red. Para obtener la férmula, primero vamos a aplicar la definicién de (511- para
ponerlo en términos de §**1:

OF OF 92+t Dzt
1 o . +1 J
o= 5 = EJ: (azgﬂ 02!) B 2]: <5ﬂ‘ 92! (211)

(2 K3

=E|-oh(zh) (2.10)

i

Simplificamos 8,2;.“ Oz

I4+1 141,041 I4+1 !
azj B awj7. T B 8wj7. o1(z") o | l) (2.12)
94 7 =] = Wjq 915 :

2 0z; 0z

Combinando las ecuaciones 2.11 y 2.12, obtenemos la siguiente féormula para calcular §* a
partir de §t1:

o =3 (O it of(z)) = 8wkt of(eh) = (i) ol (213)
J
A partir de las ecuaciones 2.10 y 2.13, podemos calcular §',... 6% calculando 6” con la

ecuacién 2.10 y aplicando la ecuacién 2.13 para obtener el resto de valores. A partir de esto,
es posible calcular las derivadas de todos los pesos utilizando la ecuaciéon 2.9.

2.4.2 Descenso por gradiente

Una vez tenemos las derivadas de todos los pesos de la red, podemos ajustarlos segin las
derivadas mediante el uso de un optimizador. Un optimizador es el algoritmo que controla
como cambiamos los pesos de la red para minimizar el error de forma eficiente. Uno de los
optimizadores mas sencillos es descenso por gradiente, que consiste en restar a los pesos una
fraccién de su derivada. La fraccion que restamos la controlamos con la learning rate, que
es un parametro ajustable. Una learning rate demasiado baja significa que la red neuronal

2.5. EVALUACION DE MODELOS 15

tardara mas de lo necesario en entrenarse, mientras que una learning rate demasiado alta
puede causar problemas de estabilidad y hacer que el modelo no se entrene bien. Sea p la
learning rate y 0F/ 8w§j la derivada de wé ; respecto al error de la red, tenemos la siguiente
férmula para actualizar los pesos de la red:

Vg T B

i.j (2.14)
0,J

Aunque este optimizador tan simple es capaz de minimizar muchas funciones, existen muchos
otros optimizadores que, aunque sean mas complejos, consiguen minimizar el error de forma
mucho més rapida [21].

2.5 Evaluacion de modelos

Una vez se ha realizado el entrenamiento de un modelo, es de vital importancia tener la
capacidad de medir lo acertados que son los resultados producidos por el modelo a la ho-
ra de realizar la tarea para la que ha sido entrenado. En este apartado se explican varias
técnicas y conceptos relevantes a la hora de evaluar el rendimiento de modelos de machine
learning, que seran utilizados cuando se analicen e interpreten los resultados obtenidos en
los experimentos realizados (ver capitulo 5). Este apartado se centra inicamente en explicar
técnicas y conceptos relevantes para medir el rendimiento de modelos entrenados en tareas
de clasificacion, ya que los experimentos se han realizado utilizando modelos entrenados para
este tipo de tareas.

2.5.1 Division de datos

A la hora de entrenar y evaluar modelos de inteligencia artificial, en la gran mayoria de casos
es imposible proporcionar al modelo todos los posibles casos de entrada y salida que tiene
que aprender. En vez de eso, se intenta que el modelo generalice estos casos a partir de un
conjunto limitado de datos de entrenamiento. Por lo tanto, a la hora de evaluar un modelo
generalmente lo que queremos medir es su capacidad de generalizar los patrones aprendidos
en el entrenamiento al encontrarse con datos nuevos, no lo bien que predice los datos ya
aprendidos.

Es por esto que, a la hora de medir el rendimiento de los modelos se suelen dividir los
datos en dos conjuntos: uno de entrenamiento y otro de evaluacién. Los datos del conjunto
de entrenamiento tinicamente se utilizan para entrenar el modelo, mientras que los datos de
evaluacién solo se utilizan para medir el rendimiento del modelo. De esta forma, el rendimiento
obtenido a la hora de evaluar el modelo reflejara mucho mejor la capacidad de generalizacién
del modelo [22].

Para asegurar que la division de datos es efectiva, hay que asegurarse que no hay muestras
repetidas en el conjunto de datos de entrenamiento y evaluaciéon. En caso de que existan
algunas muestras que estén en ambos conjuntos, los resultados obtenidos no seran del todo
representativos de la capacidad de generalizacién del modelo, ya que para esos datos el modelo
ya ha tenido una oportunidad de aprender el valor correcto durante el entrenamiento [23].

16 INTELIGENCIA ARTIFICIAL

2.5.2 Logits

En tareas de clasificacién los modelos se entrenan para, dado un conjunto de entradas, pre-
decir a cudl de las posibles clases de salida pertenece. No obstante, en la gran mayoria de
arquitecturas, el modelo no produce una tnica salida que nos dice cuédl clase ha predecido, si
no que produce un valor para cada clase posible. Estos valores se conocen como los logits del
modelo.

Los logits producidos por un modelo pueden ser cualquier niimero real. Es por esto que,
generalmente, los logits se normalizan antes de ser utilizados. Aunque existen varios métodos,
uno de los mas comunes es la normalizacién softmaz [24], que emplea la funcién exponencial
para normalizar los logits de forma que todos los logits normalizados estén entre 0 y 1, y la
suma de todos los logits normalizados sea 1. La salida funcién softmax o : R™ — [0,1]™ se
puede definir de la siguiente formas:

eli

Zj eli

Una vez tenemos los logits normalizados, podemos saber cudl es la clase predecida por el
modelo cogiendo la clase cuyo logit sea mayor:

o(l); =

(2.15)

y = argmax o(l;) = argmax/; (2.16)
i i
También es relevante la confianza que tiene el modelo, que es el valor del logit normalizado
de la clase predecida:

¢ =maxo(l;) (2.17)

)

Los resultados con menor confianza producidos por un modelo deberian tratarse con cuidado,
ya que generalmente estos resultados seran menos fiables que los resultados con mayor con-
fianza. No obstante, aunque una menor confianza generalmente indica un resultado menos
fiable y viceversa, no se deberia interpretar la confianza directamente como la probabilidad
de que la salida predecida por un modelo sea correcta, ya que estos dos valores pueden di-
ferir significativamente [25]. La diferencia entre la confianza y la probabilidad de que una
prediccion sea correcta se explora més adelante en el apartado 2.5.5.

2.5.3 Meétricas de rendimiento

Una de las principales caracteristicas que queremos medir a la hora de evaluar un modelo
es el rendimiento, es decir, lo bien que realiza la tarea para la que ha sido entrenado. Para
medir el rendimiento de modelos de clasificacién existen muchas métricas, cada una con sus
ventajas y desventajas [26].

2.5.3.1 Tasa de aciertos

A la hora de entrenar modelos de clasificacion, una de las métricas mas simples e intuitivas
es la tasa de aciertos, que es la cantidad de aciertos obtenidos por el modelo dividido entre la
cantidad de datos totales en el conjunto de evaluacion. Para obtener esta métrica, simplemente

2.5. EVALUACION DE MODELOS 17

tenemos que comparar la cantidad de veces que el modelo ha acertado la clase entre la cantidad
de muestras totales de evaluacién. Sean y las clases predecidas por el modelo e ¢ las clases
esperadas del conjunto de evaluacion, tenemos la siguiente definicion:

) aciertos i : y; = i
tasa de aciertos = =

= _ 2.18
total |3 (2.18)
La tasa de aciertos, aunque es una métrica muy intuitiva y simple, en mucho casos puede
no ser ideal para medir el rendimiento de los modelos, especialmente cuando las clases del
conjunto de evaluacién tengan un nimero de muestras muy desequilibrado [27].

2.5.3.2 Precision, exhaustividad y f-score

Para calcular muchas de las métricas de rendimiento de modelos de clasificacién, es necesario
calcular el nimero de muestras verdaderas positivas (VP), verdaderas negativas (VN), falsas
positivas (FP) y falsas negativas (FN) de cada clase [26]. Podemos ver en la tabla 2.1 como
a partir de la prediccién y del modelo y el valor real de la muestra § podemos definir a cuél
de las cuatro clasificaciones (VP, VN, FP, FN) pertenece cada muestra.

Prediccién
Positivo (y = k) Negativo (y # k)
Positivo (§ = k) Verdaderos positivos (VP) Falsos negativos (FN)

Valor verdadero

Negativo (g # k) Falsos positivos (FP) Verdaderos negativos (VN)

Tabla 2.1: Relacién entre la prediccién y y el valor verdadero ¢ respecto a una clase k. Muestra
como se definen los verdaderos positivos, verdaderos negativos, falsos positivos y falsos
negativos para la clase k a partir de la prediccion y el valor verdadero. Fuente: elaboraciéon
propia

Matematicamente, podemos calcular la cantidad de verdaderos positivos, verdaderos negati-
vos, falsos positivos y falsos negativos de una clase k de la siguiente forma:

VP =iy =kNy = k|
VN =iy # kNG # k|
FPp =ity =k NG # k|
FNp=li:y; #k Ny = K|

(2.19)

A partir de estos valores, podemos calcular la precisién y la exhaustividad de cada clase, dos
métricas que se utilizan frecuentemente para medir el rendimiento de los modelos:

e La precisiéon mide la fraccién de valores predecidos como positivos que son realmente
positivos. Se define como la tasa de verdaderos positivos frente al total de valores
predecidos como positivos, VP/(VP + FP).

o La exhaustividad la fraccién de valores realmente positivos que son predecidos como

18 INTELIGENCIA ARTIFICIAL

positivos. Se define como la tasa de verdaderos positivos frente al total de valores
realmente positivos, VP/(VP + FN).

Estas dos métricas, aunque en ciertos casos se suelen utilizar de forma directa, normalmente
se combinan para formar el Valor-F, o f-score, que se define como la media arménica de la
precisién y la exhaustividad. Al igual que para la precisién y la exhaustividad, esta métrica
se calcula para cada clase. Podemos definir la f-score para una clase k de la siguiente formas:

precisiony, - exhaustividadg 2VPy,
precision, + exhaustividad, ~ 2VPj, + FPj + FNy,

Fip=2 (2.20)
También es posible ponderar la media arménica utilizando un parametro 5 > 0, como se
puede ver ecuacion 2.21. Este parametro indica la cantidad de veces que es mas importante la
exhaustividad que la precisién. Para 8 > 1 se le otorga mayor ponderacion a la exhaustividad,
mientras que para 8 < 1 se le da mayor ponderacion a la precision.

precision, - exhaustividad, (14 B3?)VPy
2 - precision;, + exhaustividad, (1 + 32)VPy + 32FP; + FN,

For=(1+p5% (2.21)
La f-score es una métrica mucho mas util que la tasa de aciertos cuando el conjunto de
datos presenta un niimero de muestras desequilibrado entre clases. Es por esto que, aunque
es una métrica mas compleja y mas dificil de interpretar, normalmente es preferible medir el
rendimiento de los modelos en términos de f-score [27].

2.5.4 Métricas de eficiencia

Aunque en un mundo ideal las métricas de rendimiento serfan las inicas métricas necesarias
para evaluar que modelos son mejores, a la hora de medir el rendimiento de modelos en
el mundo real también nos importa minimizar los costes asociados con entrenar y utilizar
estos modelos. Para tener los costes en cuenta, existen las métricas de eficiencia, que intentan
cuantificar alguno de los costes del modelo y tenerlo en cuenta junto con el rendimiento.

Dado el coste al que puede llegar el entrenamiento y uso de modelos de inteligencia artificial,
las métricas de eficiencia pueden ser incluso méas importantes que las métricas de rendimiento,
especialmente a la hora de comparar arquitecturas con costes muy diferentes.

2.5.4.1 Eficiencia respecto al nimero de parametros

A la hora de entrenar modelos de inteligencia artificial, generalmente los modelos con mayor
cantidad de pardmetros obtienen mejores resultados que los modelos con menor cantidad,
especialmente a la hora de realizar tareas complejas [28]. No obstante, el coste y el tiempo de
entrenamiento de un modelo aumenta rapidamente con la cantidad de parametros del mismo,
hasta el punto que entrenar un modelo con una gran cantidad de parametros puede llegar
ser prohibitivamente caro y/o lento. Es por esto que es de vital importancia que los modelos
utilicen de forma eficiente los pardmetros, de forma que maximicen el rendimiento dada una
cantidad fija de parametros.

Para realizar un andlisis de eficiencia respecto al nimero de pardmetros hay que tener en
cuenta el rendimiento obtenido por los modelos para cierta cantidad de parametros. Para

2.5. EVALUACION DE MODELOS 19

esto, generalmente va a ser necesario definir una seria de modelos con un rango amplio de
pardmetros, y medir el rendimiento obtenido con cada uno de los modelos. Aunque esto sea
relativamente facil de realizar, interpretar los resultados obtenidos puede ser més complejo,
ya que es posible que ciertas arquitecturas de modelos no sean siempre mejores que otras,
vy que estas solo obtengan un mejor rendimiento para cierto rango de parametros. Ademas,
dependiendo de las circunstancias exactas y del uso planificado del modelo, es posible que se
prefiera un modelo peor pero menos costoso o viceversa.

En el apartado 5.3 se ha realizado un experimento que intenta medir la eficiencia respecto
al nimero de pardametros de las redes KAN frente a la de las redes tradicionales.

2.5.4.2 Eficiencia respecto al nimero de datos de entrenamiento

Otro aspecto a tener en cuenta a la hora de entrenar modelos es la cantidad de datos de
entrenamiento requeridos para obtener un buen rendimiento. Como regla general, a mayor
complejidad de la tarea que queremos resolver, mayor es la cantidad de datos necesarios
para entrenar un modelo con buen rendimiento [29]. No obstante, elaborar conjunto de datos
grandes puede ser increiblemente costoso. Ademaés, una vez obtenido el conjunto, se requiere
de mayor tiempo de entrenamiento para entrenar con un conjunto de datos més grande,
cosa que aumenta el coste de entrenamiento. Es por esto que, a la hora de entrenar modelos
de inteligencia artificial, es preferible utilizar arquitecturas y modelos que necesiten de una
menor cantidad de datos de entrenamiento para obtener buenos resultados [30].

Para realizar un andlisis de eficiencia respecto al nimero de datos de entrenamiento hay
que tener en cuenta el rendimiento obtenido para cierta cantidad de datos de entrenamiento.
Esto generalmente se hace entrenando el mismo modelo con varias fracciones de un conjunto
de datos predefinido, y midiendo el rendimiento obtenido al entrenar con cada una de las
fracciones del conjunto de datos de entrenamiento. Al igual que para la eficiencia respecto al
numero de parametros, dependiendo del caso de uso del modelo es posible que sea preferible
utilizar un modelo con menor rendimiento que requiera una menor cantidad de datos o
viceversa.

En el apartado 5.4 se ha realizado un experimento que intenta medir la eficiencia respecto
al nimero de datos de entrenamiento de las redes KAN frente a la de las redes tradicionales.

2.5.4.3 Eficiencia respecto al tiempo de entrenamiento

Otro de los costes de entrenar modelos de inteligencia artificial es el tiempo que tarda el
modelo en ser entrenado. Al igual que con los otros tipos de costes, es preferible que el
tiempo necesario para entrenar el modelo sea lo menor posible, con el fin de minimizar el
coste necesario para entrenar el modelo [31].

Aunque el tiempo de entrenamiento sea una medida mé&s directa del coste necesario para
entrenar modelos, en muchos casos es preferible medir la eficiencia en términos de otros
costes, ya que el tiempo de entrenamiento puede variar dependiendo del hardware utilizado
para el entrenamiento. Es por esto que es muy complicado comparar resultados de distintos
experimentos si estos han utilizado sistemas diferentes [32]. No solo eso, si no que en muchos
casos ocurre que ciertos modelos van mejor en algunos sistemas que en otros, cosa que hace
que los resultados puedan no ser tan informativos como se esperaba, incluso cuando se esté
entrenando en exactamente el mismo sistema. Ademas de todo esto, también hay que tener

20 INTELIGENCIA ARTIFICIAL

en cuenta el entorno de entrenamiento, ya que si el equipo en el que se estd entrenando el
modelo esté siendo utilizado para otros programas o tareas es posible que los tiempos varien
por eso.

2.5.5 Calibracion

Como ya se ha visto en el apartado 2.5.2, ademas de la clase predecida podemos obtener la
confianza que tiene el modelo en que la respuesta correcta es esa clase. Utilizando ese niumero,
es posible (en teoria) distinguir los casos en los que el modelo esta seguro que la salida es
de la clase predecida, de los casos en los que el modelo no tenga tanta certeza. No obstante,
aunque la confianza es un valor entre 0 y 1, no podemos necesariamente interpretarlo como la
probabilidad de que la clase sea correcta. Que el modelo tenga confianza del 95% no significa
que la respuesta que ha dado sea la correcta en un 95% de los casos [33].

Para medir el grado de discrepancia entre la confianza del modelo y la probabilidad de que
la muestra predecida sea correcta, tenemos que estudiar la calibracién del modelo. Modelos
bien calibrados tendran valores parecidos para la confianza y la probabilidad de que la muestra
sea correcta, mientras que modelos mal calibrados no [34]. Existen varias formas de medir la
calibracién de los modelos. En los siguientes apartados, explicamos dos de las mas comunes.
En el apartado 5.5 se ha realizado un analisis de la calibraciéon de varios modelos, utilizando
estas dos métricas que veremos a continuacién.

2.5.5.1 Rendimiento por intervalo de confianza

Una manera visual de medir la calibracién de un modelo es utilizando Calibration Plots. Estos
graficos se basan en agrupar las muestras de evaluacién en funcién de la confianza predecida
por el modelo y medir la calibracién de cada uno de los grupos [35]. Existen varias estrategias
para dividir las muestras en base a la confianza, aunque la mas comun es hacer una divisién
uniforme respecto a la confianza de las muestras, en la que cada grupo de muestras representa
una fraccién uniforme del intervalo [0, 1]. Por ejemplo, para N = 5 grupos, tendriamos en un
grupo todas las muestras con confianza ¢ € [0,0.2), en otro todas las muestras con confianza
¢ €[0.2,0.4), etc. La férmula general para encontrar el grupo G de una muestra con confianza
¢ en una division uniforme en N grupos es

G(z) = |e(z) - N, (2.22)

de forma que las muestras estan divididas en los grupos Gy, ...,Gy_1. Una vez agrupadas
todas las muestras, se calcula para cada grupo la confianza media y la tasa de aciertos media.
Si el modelo esta bien calibrado estos dos valores seran cercanos, y viceversa [34]. También se
suele calcular la cantidad de muestras en cada grupo, ya que un grupo con menor cantidad de
muestras es menos relevante que un grupo con mayor cantidad. Podemos definir la confianza
media conf(G;) y la tasa de aciertos media acc(G;) de un grupo de muestras G; de la siguiente
forma:

2.5. EVALUACION DE MODELOS 21

conf(G;) = ‘éz’ Z c(x)

2€Gs A (2.23)
_ |z € Gi:ys =0l

|Gl

acc(G;)

Los valores de confianza y tasa de aciertos media para cada grupo se suelen representar en un
grafico de lineas, que muestra la confianza media de cada grupo respecto a la tasa de aciertos
media. Estos graficos se conocen como curvas de probabilidad de calibracién o Probability
Calibration Curves, y se utilizan para medir de forma visual la calibraciéon de un modelo de
inteligencia artificial.

2.5.5.2 Error de calibracion esperado

Aunque la técnica descrita anteriormente se puede utilizar para discernir visualmente la cali-
bracién de un modelo, no es facil de utilizar para comparar la calibracién de varios modelos.
Como tenemos 3 cantidades para cada grupo de muestras (confianza media, tasa de acier-
tos media y cantidad de muestras), realizar un andlisis utilizando estos nimeros puede ser
complejo. No obstante, existe otra métrica que combina toda esta informacion con el fin de
proporcionar un tnico valor con el que podemos medir la calibraciéon del modelo. Esta métri-
ca, conocida como el error de calibracién esperado (ECE) o Ezpected Calibration Error, mide
la diferencia esperada entre la confianza y la tasa de aciertos de cada grupo de muestras G,
ponderandolo respecto al nimero de muestras de cada grupo [34]. Se define con la siguiente
férmula, siendo n la cantidad total de muestras, G; el grupo i-ésimo de muestras, conf() la
confianza media y acc() la tasa de aciertos media:

1
ECE= - |G- ;) — conf(G; 2.24
C - |G| - |acc(G;) — conf(G;)| ()

()

Como el ECE mide el error de calibraciéon, un menor ECE significa una mejor calibracion de
un modelo, y viceversa. Aunque el ECE es una métrica mucho més simple para comparar la
calibracién de los modelos, no nos dice nada de como se varia la confianza y la tasa de errores
en toda la distribucién de muestras. Es por esto que, aunque en los analisis de calibracién el
ECE sea la métrica principal, las curvas de calibracién se siguen utilizando para poder ver
mas detalladamente como se comporta un modelo [33].

2.5.6 Aprendizaje continuo y el olvido catastréfico

El aprendizaje continuo es la capacidad de aprender dada nueva informacién sin olvidar la
informacién ya aprendida. Esta es una habilidad fundamental para cualquier sistema que
opere en un entorno con informacién dinamica. No obstante, las redes neuronales artificiales
y la gran mayoria de modelos de inteligencia artificial actuales no tienen esta capacidad [36].
Es mas, al entrenar estos modelos con informacién nueva, estos suelen casi inmediatamente
reemplazar los patrones aprendidos al entrenar con la informacion anterior por la informacién
nueva, “olvidando” toda la informacién aprendida previamente. Este fenémeno se conoce
como el olvido catastrofico [37].

22 INTELIGENCIA ARTIFICIAL

Como consecuencia de este comportamiento, los modelos actuales de inteligencia artificial
se tienen que entrenar con toda la informacién necesaria de golpe, sin poder realizar un en-
trenamiento incremental. Este problema hace que modificar modelos grandes de inteligencia
artificial es muy costoso, incluso si es solo para introducir una pequena cantidad de infor-
macién nueva, ya que es necesario entrenar el modelo también con toda la informacién ya
aprendida, en vez de iinicamente con la nueva informacién.

Para medir la capacidad que tiene un modelo para realizar aprendizaje continuo, especial-
mente en tareas de clasificacion, se suele utilizar un entrenamiento por fases. En cada una de
las fases se entrena el modelo con un subconjunto de las clases del conjunto de entrenamiento.
Después de cada fase, se mide el rendimiento del modelo no solo en las clases entrenadas en
esa fase, si no también en las clases entrenadas en fases anteriores. De esta forma, podemos
medir la retencién de informacién anterior del modelo, y a partir de ahi medir como de bueno
es el modelo a la hora de mantener la informacién anterior integrando la informacién nueva
[38]. Podemos ver un andlisis que intenta medir la capacidad de varios modelos para realizar
tareas de aprendizaje continuo en la seccién 5.6, donde se realiza un entrenamiento por fases
similar al que se ha descrito.

3 Redes Kolmogérov-Arnold

Las redes Kolmogoérov-Arnold, o KAN (Kolmogdrov-Arnold Networks), son una nueva alter-
nativa a las redes neuronales tradicionales. Este tipo de red, como se estudia en los apartados
siguientes, estan basadas en una estructura y unos principios radicalmente diferentes que los
encontrados en las redes tradicionales actuales.

En las redes tradicionales, que a partir de ahora llamaremos redes MLP (Multi- Layer Per-
ceptron), cada una de las capas lineales seguidas por funciones de activacién no lineales. Las
capas lineales de la red contienen pesos entrenables, mientras que las funciones de activacién
no lineales son fijas (no entrenables). A partir de esta combinacién de elementos (transfor-
maciones lineales entrenables y funciones no-lineales fijas), una red tradicional es capaz de
aproximar casi cualquier funcién matemética [10].

Las redes KAN, no obstante, difieren significativamente de este planteamiento. En vez
de combinar capas lineales entrenables y funciones de activacién no entrenables, las redes
Kolmogorov-Arnold permiten el entrenamiento directo de transformaciones no lineales entre-
nables. Gracias a esta combinacién de las propiedades de las capas lineales y de las funciones
de activacién en uno, las redes KAN no necesitan utilizar funciones de activacién ni muchos
de los otros mecanismos tipicos de las redes neuronales tradicionales, ya que son capaces de
representar cualquier funcién matemaética inicamente utilizando capas KAN.

Red MLP Red KAN
y= (o-noWno..-OO-QOWQOUI OW1)(£C) Y= ((Pno---o(I)QO(I)l)(:L“)
1 Tw] g Y1

I %01. 1'1 — W1

Ty ——— zwy, —2— Ym Tp — Ono Tp) ——— Ym

Tabla 3.1: Comparacién de la estructura de las redes MLP con las redes KAN, mostrando las fun-
ciones no-lineales en azul, los pardmetros entrenables lineales en rojo, y los pardmetros
entrenables no-lineales en morado. Fuente: elaboraciéon propia

A diferencia de las redes tradicionales, que estdn basadas en el teorema de aproximacién
universal [4], la teoria matematica detrds de las redes KAN estd basada en el teorema de
representacion de Kolmogérov-Arnold [5]. Es a partir de la generalizacion de este teorema
que se obtienen las féormulas que definen la estructura interna de las redes KAN.

Como se estudia mas adelante, es posible utilizar muchas estructuras matemadticas para

23

24 REDES KOLMOGOROV-ARNOLD

implementar el componente principal de la estructura interna de las redes KAN. Cada una
de estas estructuras tiene sus ventajas y desventajas, por lo que puede resultar complejo elegir
la estructura optima a la hora de disefiar un modelo que utilice redes Kolmogérov-Arnold.

3.1 Teorema de representacion

Las redes KAN estén basadas en el teorema de representacién de Kolmogérov-Arnold [5]. Este
teorema establece que cualquier funcién continua de multiples variables se puede construir a
partir de sumas de funciones de una variable, siempre que todas sus entradas estén acotadas
en un rango finito. Esto significa que podemos representar cualquier f : [ak, bg]™ — R a partir
de sumas y funciones de una variable. Especificamente, podemos re-escribir f de la siguiente
forma, siendo g; : R —= R y h;; : [a;, b;] — R:

2n n
f(a;l,...,xn) = Zgi Zhi’j(xj) (31)
=0 7=1

Como se puede ver en la ecuacién 3.1, podemos representar cualquier funciéon de n variables a
partir de 2(n+1) funciones g; y (2n+1) xn funciones h; ;. Aunque pueda parecer sorprendente,
este teorema se puede aplicar a cualquier funcién continua cuyas entradas estén acotadas, por
lo que siempre tiene que existir para este tipo de funciones una forma de descomponerlas en
funciones de una tnica variable. Analizando en detalle la férmula 3.1, la funcién estd dividida
en dos capas, la primera formada por los resultados de las funciones h; ; y la segunda formada
por las funciones g;:

2n n
f(a;l,...,xn) = Zgi <th,](a}])> (32)
=0 7=1

—_———

2% capa 12 capa
La arquitectura KAN, como veremos en los siguientes apartados, es una generalizacién de
esta representacion de funciones de varias variables como sumas de funciones de una variable.

3.2 Capas KAN

Las redes KAN, al igual que las redes neuronales tradicionales, también se organizan en capas,
con el fin de poder disenar, entrenar y utilizar redes con una gran cantidad de parametros
sin tener que especificar todo manualmente. De forma similar a las redes MLP, ademas, las
redes KAN también normalmente comparten la configuracién para todas las neuronas de una
capa de la red, de forma que se compartan de forma similar y se conectan de la misma forma
con otras capas de la red.

No obstante, a pesar de todas estas similitudes la estructura interna de una capa KAN
es muy diferente a las de las redes tradicionales. Mientras que las redes tradicionales estan
formadas por matrices de pesos lineales, las capas KAN se organizan como sumas de funciones
de una variable, de forma similar a las capas vistas en la formula del teorema de representacién
de Kolmogérov-Arnold (ver ecuacion 3.2).

3.2. Caras KAN 25

Al estar formadas por capas, las capas utilizadas por las redes KAN son compatibles con
las capas de las redes tradicionales. De esta forma, se pueden construir modelos mixtos que
utilicen capas KAN y capas tradicionales a la vez.

3.2.1 Capas densas

Las capas densas de las redes KAN, como ya se ha mencionado anteriormente, estan direc-
tamente basadas en las capas de funciones del teorema de representacién de Kolmogorov-
Arnold. De esta forma, cada salida de una capa KAN densa estd formada por una suma de
funciones de una variable de todas las entradas de la capa.

1 4
\ T P
(i
P In ” d)n,i
Ty

(a) Célculo de una salida de una capa densa MLP (b) Célculo de una salida de una capa densa KAN

Figura 3.1: Comparacién del calculo de una salida de una capa densa MLP (a) con el de una capa
densa KAN (b). Higase notar que en la capa densa MLP la no linearidad (o) se procesa
después de la suma, mientras que en la capa KAN las no linealidades (¢1,..., ¢, ;) se
procesan antes de la suma. Fuente: elaboracién propia

Para una capa KAN de n entradas y m salidas, necesitaremos n x m funciones de una variable
para construir una capa densa KAN. Sean ¢;; : R — R las funciones de una variable de la
capa, tenemos la siguiente férmula para calcular las salidas de la capa, de forma que la funcién
¢;,j recibe la entrada x; y afecta a la salida y;:

yj = Z i (i) (3.3)

De forma similar a las capas tradicionales, también podemos representar la capa mediante
el uso de matrices, utilizando una matriz de funciones ® : R™ — R™ que contiene todas las
funciones ¢; ; de la capa:

Y1 ¢11() oo Pna() | |7
y=|:|=] + |
Ym Qsl,m(') ce gbn,m() Tn

P

(3.4)

A partir de la férmula 3.4, podemos ver que la estructura de las capas densas KAN es similar
a la estructura de las capas densas tradicionales (ver ecuacién 2.5), solo que sustituyendo
cada uno de los pesos encontrados en la capa densa tradicional por una funcién ¢. Ademas,
cabe destacar que las capas densas KAN no tienen un término de bias, ya que el sesgo esta

26 REDES KOLMOGOROV-ARNOLD

contenido en las funciones ¢; ; de la capa, como se puede observar en la figuras 3.1 y 3.2.

I d)l .

Tn ? ¢n,o

(a) Capa densa MLP (b) Capa densa KAN

Figura 3.2: Comparacion de la estructura de una capa densa de una red MLP (a) con una capa densa
de una red KAN (b). En las capas densas MLP primero se suma y luego se aplica la
funcién no lineal (o), mientras que en las KAN primero se aplican funciones no lineales a
todas las entradas (¢1.e, ..., %n,e) y después se suman los resultados obtenidos. Fuente:
elaboracién propia

Una capa densa KAN de n entradas y m salidas, si cada una de las funciones de la capa
tienen k pardmetros entrenables (ver apartado 3.3), tiene O(nm k) pardmetros entrenables.
Esto, aunque en teoria es bastante mayor que los O(nm) parametros entrenables requeridos
para entrenar una capa densa MLP, en la practica no es tan problemético, ya que gracias al
mayor poder representativo de las redes KAN se pueden reducir las neuronas de una capa
significativamente manteniendo un nivel de rendimiento similar al de una capa MLP con
mayor cantidad de parametros [6].

3.2.2 Capas convolucionales

Como ya se ha analizado y estudiado en el apartado 2.3.2, las capas convolucionales permiten
a los modelos de machine learning aprender de forma mucho mas efectiva y eficiente los
patrones internos de datos estructurados, como imagenes o ficheros de audio. Basdndonos en
la division de funciones en capas de funciones de una variable presentada por el teorema de
representacién de Kolmogérov-Arnold (ver ecuacién 3.2), es posible generalizar la estructura
de las convoluciones tradicionales para que estén basadas en sumas de funciones de una
variable. De esta forma, obtenemos las convoluciones KAN [39].

Las convoluciones KAN, matematicamente, son similares a las convoluciones discretas tra-
dicionales, solo que se ha sustituido el kernel lineal de las convoluciones tradicionales por
un kernel formado por funciones no lineales de una variable. De esta forma, cada una de las
salidas de la convolucién se obtiene a partir de una suma de las salidas de las funciones del
kernel, manteniendo la estructura de las capas convolucionales MLP a la vez que implementa
la suma de funciones del teorema de representacién [40]. En la figura 3.3 se puede ver una
representacién visual de una operacién de convolucién KAN de dos dimensiones.

3.3. FUNCIONES KAN 27

o[1]1]1]oo]0].

olo[1|1]1]o]o] - —--rf4]3]4]1
ofofol1]1]1]0 P11 | P12 13 1]214]3]3
ololof[1][1]0]0] ® [d21|d22|d23| = |[112(3]4]1
ofo[1][1]ofo[0] - [fs1|dsa|dss| -~ |1]3[3[1]1
o[1][1]o]o]o]o0 3[3[1]1]0
1[1]ofofofofo o z® P

X

Figura 3.3: Representacién de una convolucién KAN 2D. Fuente: elaboracién propia, basada en [16]

Al igual que para las capas convolucionales tradicionales, las dimensiones del kernel de una
capa convolucional KAN dependen de la cantidad de dimensiones de los datos de entrada de
la capa (ver apartado 2.3.2). Para datos 2D, siguiendo el ejemplo de las redes convolucionales
tradicionales establecido en la ecuacién 2.7, siendo x € R™ "™*S la entradas de la capa y
#F : R +— RPX9%5 Jos kernels de la capa, podemos definir el comportamiento de la capa a
partir de las convoluciones KAN (denotadas como x ® y) de la siguiente forma:

Vigk = (@ ®)i =D Ok, (Titajrbe) (3.5)

a,b,c

De forma similar a las capas densas KAN, las capas convolucionales KAN también tienen
una cantidad de parametros superior que las capas convolucionales MLP. Para una capa
convolucional con kernels de tamano p x g X s, teniendo cada una de las funciones de los
kernels k pardmetros entrenables, tenemos O(pqsk) pardmetros entrenables, comparados
con los O(pgq s) de las capas convolucionales tradicionales.

3.3 Funciones KAN

Las capas KAN, ya sean densas o convolucionales, estan basadas en las suma de funciones
de una variable, tal y como se especifica en el teorema de representacién de Kolmogérov-
Arnold (ver apartado 3.1). Para poder construir las capas KAN en acorde con el teorema de
representacion, es necesario idear un método de construccién de funciones cuyas funciones
resultantes sean capaces de aproximar cualquier funcién de una variable. En otras palabras,
necesitamos una serie de férmulas matematicas que nos permitan aproximar cualquier funcién
f:R—=R

Este método, no obstante, debera ademas satisfacer las siguientes propiedades para que su
uso en las redes KAN sea ideal:

e Las funciones deberian tener una cantidad variable de pardmetros, de forma que a mayor
cantidad de parametros mayor sea el detalle de la funcién producida. Esto permite
variar la cantidad de parametros dependiendo de la complejidad de las funciones de
una variable a aprender, anadiendo flexibilidad y permitiendo la implementaciéon de
ciertas técnicas avanzadas a la hora de entrenar modelos KAN (ver apartado 3.3.1.3)

28

REDES KOLMOGOROV-ARNOLD

Las funciones producidas deberian ser continuas y derivables en todo su dominio, con el
fin de poder hacer uso de métodos de entrenamiento basados en el calculo de gradientes
y backpropagation (ver apartado 3.4.1)

Las funciones deberian poder aproximar cualquier funcién de una variable dados los
suficientes parametros. Si el método de aproximaciéon de funciones de una variable no
es capaz de aproximar cualquier funcion, es posible que la red no sea capaz de aproximar
cualquier resultado, y que eso cree limitaciones o dificultades a la hora de entrenar la
red [41].

La evaluaciéon de estas funciones deberia de ser rapida y eficiente, con el fin de minimizar
el coste y tiempo necesario para entrenar y utilizar la red KAN producida.

La cantidad de parametros entrenables necesarios para poder representar estas funciones
deberia ser lo mas baja posible, con el fin de minimizar el tamano de los modelos
obtenidos y, ademds, de prevenir ciertos problemas a la hora de entrenar el modelo [7].

Aunque hay muchos métodos y técnicas matematicas que satisfacen estas propiedades, en las
redes KAN normalmente se utilizan splines para implementar las funciones entrenables de
una variable [6, 42].

3.3.1 Splines

Una spline, mateméaticamente, es una funcién continua y derivable construida por varios
trozos polinémicos. El orden k de la spline determina el orden de los polinomios que la
constituyen. Estos trozos se controlan por los nodos t; de la spline, que marcan a partir de
que valor acaba un trozo y empieza el siguiente. Los nodos de una spline tienen que cumplir

que tg < t; <--- < t,—1. Una spline solo puede tener valores distintos de 0 en el intervalo
[th tm—l] .
2597 ;
: : — Bos
204 : § o Bus
i T B3
1.5 — Bs;3
1.0 i — Ba;s
i —— Bs;3
0.5 ? Bs,3
i — s
0.0 13

Figura 3.4: Ejemplo de una spline uniforme en el que se han representado las funciones base

de orden 3 de la spline (Byg,...,Bs,3; en varios colores), junto a la spline resul-
tante al combinar todas estas funciones base (S, en negro), utilizando los valores
a; = (0.5,1.5,2.5,1.5,0.5,1.5,2.5,1.5,0.5, 1.5) para combinar las funciones base. La spli-
ne tiene nodos en 0,0,0,0,1,2,3,4,4,4,4 y es de orden 3. Fuente: elaboracién propia

Cada una de las funciones base depende unicamente de los nodos t; de la spline, y solo
produce valores en el intervalo [0, 1]. Una vez establecidos los nodos de la spline (y por lo

3.3. FUNCIONES KAN 29

tanto también las funciones base), podemos aproximar cualquier funcién como una suma
ponderada de funciones base [41]. Por lo tanto, si B;j : R — [0, 1] son las funciones base de
orden k para unos nodos t;, y «; es valor por el que multiplicamos B; j en la suma ponderada,
podemos calcular la salida de la spline S : R — R con la siguiente férmula:

S(z) = Z ;i B; () (3.6)

Cabe destacar que, para aproximar cualquier funcién de una variable utilizando splines,
Unicamente es necesario variar los pardmetros ;. Los pardmetros B;j o t; no son necesarios
para poder aproximar cualquier funcién utilizando splines [41]. Un ejemplo de esto se puede
ver en la figura 3.5, en la que se ha utilizado una spline para aproximar la funcién sinc x = %
obteniendo los pardmetros «; correspondientes a partir de unos t; dados.

0 1 2 3 4 5 6

Figura 3.5: Spline uniforme de orden 3 aproximando sincz en el intervalo [0, 27T], representando la
spline final junto con todas las funciones base (By 3, - . . , B17,3) multiplicadas por su valor
correspondientes (ayp, ..., a17). Los valores de los nodos, distribuidos uniformemente en
el intervalo [O, 27?} , se han representado como lineas verticales grises. Fuente: elaboracién
propia

Aunque las splines requieran muchos parametros y calculos para definirse completamente,
ya que hay que definir ¢; y calcular todas las B; ; correspondientes a partir de estos valores,
realizar aproximacion de funciones una vez obtenidas las funciones base B; ; es relativamente
simple, ya que tinicamente es necesario variar los pardmetros «;, dejando todos los otros tér-
minos fijos. En las implementaciones KAN eficientes, esta propiedad se explota para calcular
todas las B; j primero, y luego reutilizando los valores obtenidos con todos los parametros «;
diferentes de todas las splines de la red [43].

3.3.1.1 Funciones base

A partir de los nodos de una spline, podemos definir las funciones base de la misma. Una spline
de orden k tiene funciones base de orden 0,1,...,k%. Dependiendo del orden, las funciones
base de una spline se comportan de forma diferente:

o Funciones base de orden 0: son funciones que devuelven 1 si x estan entre los nodos t;
Vv t4+1, 0 0 si no.

o Funciones base de orden 1: interpolan linealmente entre dos funciones base de orden 0,

30 REDES KOLMOGOROV-ARNOLD

en el rango [t;, ti12]

e Funciones base de orden 2: interpolan cuadriaticamente entre dos funciones base de
orden 1, en el rango [t;, t;+3]

o Funciones base de orden k: realizan una interpolaciéon de orden k entre dos funciones
base de orden k — 1, en el rango [t;, t;4x+1]

Se puede ver una representacion visual de las funciones base de orden 0, 1, 2 y 3 de una spline
en la figura 3.6.

1.0 1.0

0.8 Bao 0.8
0.6 3 0.6
0.4 0.4
0.2 0.2

0.0 0.0
0 1 2 3 4 0 1 2 3 4

(a) Funciones base de orden 0 (b) Funciones base de orden 1

10
08
06
0.4
02

0047

(c) Funciones base de orden 2 (d) Funciones base de orden 3

Figura 3.6: Funciones base de orden 0 (a), orden 1 (b), orden 2 (c¢) y orden 3 (d) para una spline
uniforme de orden 3, con nodos 0,0,0,0,1,2,3,4,4,4,4. Fuente: elaboracién propia

Matematicamente, las funciones base de una spline se definen utilizando las férmulas de Cox-
de Boor [44]. Esta férmula define en el caso base las funciones base de orden 0, y a partir de
ahi define recursivamente las funciones base de orden superior. Sean t; los nodos de la spline,
y teniendo tg < t; < --- < t,,_1 podriamos definir las funciones base de la siguiente forma:

1 si t;,<z<tn

B'O X)) =
i0() 0 en otro caso (3.7)
Big(w) = ———Bip-1(z) + ——— B 1 1(x)
tivk —t; titkr1 — i1

Aunque esta es la forma en la que se suele presentar la formula de Cox-de Boor, esta es una
simplificacién, ya que no tiene en cuenta que es posible que dos nodos adyacentes coincidan
(t; = tiy1 para algin valor 7). En este caso, si se estudia en detalle el caso recursivo de la
férmula de Cox-de Boor, se estaria realizando una divisién por 0 a la hora de calcular alguna
de las funciones base de orden 1. Ademas, si llegasen a coincidir varios nodos seguidos, también
se estaria efectuando esta divisién por cero a la hora de calcular ciertas funciones base de
ordenes superiores.

Para que la formula de Cox-de Boor funcione correctamente incluso en estos casos, se afiade
la condicién de que, cuando se realice una divisién por cero en la férmula Cox-de Boor, hay

3.3. FUNCIONES KAN 31

que considerar que el resultado de la divisiéon es 0. En otras palabras, hay que considerar
a/0 = 0 para que la férmula 3.7 funcione correctamente en todos los casos.

Si se incorpora este comportamiento (a/0 = 0) a la ecuacién de Cox-de Boor en si, se
obtienen las siguientes ecuaciones:

B () 1 si <2<t
o(z) =
’ 0 en otro caso

(z) men Bk (@) st b # b
ik 1(T) =

' 0 en otro caso (3.8)
titk+1—tit1

ti - .
bi k() B 1 (2) st tigpgr # i

i k2 =
’ 0 en otro caso

Bik(x) = big1(x) + big2(z)

Aunque todo esto pueda parecer un detalle menor, resulta que en el contexto de las redes
KAN es una distincién bastante importante, ya que como veremos en el apartado 3.3.1.3 las
splines més utilizadas en las redes KAN suelen tener varios nodos que coinciden.

3.3.1.2 Derivadas

Como ya se ha visto anteriormente, para entrenar modelos de inteligencia artificial es casi
siempre necesario calcular las derivadas respecto al error de la salida producido por el modelo.
Las derivadas de las splines pueden ser calculados a partir de la férmula Cox-de Boor [45].
Las derivadas obtenidas a partir de derivar la férmula 3.7 se pueden ver a continuacién:

§'(x) = 3 aiBl ()

k k
B(z) = ———Bix-1(z) -

tivk — ¢

(3.9)
—— Bijip-1(2)
Litk+1 — it

Al igual que para la férmula de Cox-de Boor, para que la férmula de las derivadas funcione
cuando dos nodos coinciden hay que considerar que a/0 = 0. Teniendo esto en cuenta, la
formulas para calcular las derivadas de las funciones base de una spline son las siguientes:

é,k(ff) = bé,k,1<3«") - bg,k,1(¢"«")

{k 1(37) _ ﬁk_tiBi’k,]_(x) si tl+k # tz
o 0 en otro caso (3.10)

b;,k,Z(SU) = {ti+k+1t¢+1BZ+1’k_1(x) st tivkt1 7 tist

en otro caso

32 REDES KOLMOGOROV-ARNOLD

3.3.1.3 Splines uniformes y grid intervals

En el contexto de las redes KAN, se suelen utilizar splines uniformes para representar las
funciones de una variable, ya que tienen muchas propiedades deseables, como que mantienen
la continuidad para todas las derivadas en todo su dominio [46] o que son relativamente
eficientes de calcular.

Para hacer que una spline sea uniforme, simplemente es necesario repetir el primer y tltimo
nodo k veces, siendo k el orden de la spline. De esta forma, tendriamos los siguientes nodos:

t = (tost1, - slho1sthy s tmk1sbm—ky---stm—1), (3.11)
nodos iniciales nodos centrales nodos finales
En la férmula 3.11, todos los nodos iniciales iguales al primer nodo central (tg =t = --- = tj)
y todos los nodos finales son iguales al tltimo nodo central (t,,—x—1 = t;—p = -+ = tym—1).
Por lo tanto, si utilizamos splines uniformes, los tnicos valores necesarios para definir los
nodos de la spline son los nodos centrales (tg, ..., tm_r—1)-

En el contexto de las KAN, a los nodos centrales en las splines uniformes se le suele llamar
la grid de la spline. Introduciremos a partir de aqui la notacién g; para representar la grid,
teniendo g = (go, - -+, 9m—2k—1) = (tg+1,---,tor). El vector de nodos t, expresado utilizando
esta notacion, seria el siguiente:

t=1(90,90,---,90,90: 915 Gm—2k—1 > Gm—2k—1s- - - » Gm—2k—1) (3.12)

nodos iniciales nodos centrales (grid) nodos finales

Por razones de eficiencia, los nodos de la grid se suelen distribuir uniformemente en todo el
rango de la grid [43]. Por lo tanto, tenemos dos pardmetros para controlar completamente los
nodos de las splines:

o Tamano de la grid (G): la cantidad de nodos de la grid. Puede variar enormemente
dependiendo de la complejidad de las funciones que se estan intentando aproximar y
del tamano de la red KAN.

e Rango de la grid: intervalo de valores en el que se distribuyen los nodos de la grid. Suele
ser [0,1] o [—1, 1], excepto en las capas de salida.

3.3.1.4 Alternativas

Aunque en las redes Kolmogorov-Arnold normalmente se utilizan splines, tal y como propuso
la publicacién original [6], se han ido desarrollando varias alternativas adicionales. Muchas
de estas alternativas, aunque mas complejas matematicamente, tienen algunas caracteristicas
interesantes que hacen que funcionen mejor en ciertos casos. Las alternativas mas importantes
a las splines en las redes KAN son las siguientes:

o Polinomios de Chebyshev: basados en la férmula de recurrencia de Chebyshev [47], esta
familia de polinomios también es capaz de aproximar funciones de una variable. Hay
varios estudios e implementaciones utilizandolos como alternativa mas eficiente a las
splines en ciertos casos [48, 49].

3.3. FUNCIONES KAN 33

o Series de Fourier: utilizan series de Fourier [50] para aproximar las funciones de una
variable. Aunque las series de Fourier tengan menos estabilidad numérica en sus extre-
mos [51], tienden a ser mds estables en su centro que otros métodos, permitiendo que
en ciertos casos funcionen mejor [52, 53].

o Polinomios de Jacobi: basados en la funcién hipergeométrica y la funcién gamma [54,
55], estos polinomios son bastante interesantes a la hora de aproximar funciones con
gran variabilidad, aunque son bastante mas costosos de calcular que otras alternativas
[56, 57].

o Wavelets: basados en la transformada ondicula utilizada en el procesamiento de seniales
[58], los wavelets son capaces de aproximar facilmente y con relativamente pocos pa-
rametros funciones con una gran variabilidad y que pueden contener con componentes
ciclicos [59, 60]. No obstante, pierden precisién a la hora de representar funciones que
no varian rapidamente [61].

o Activaciones ReLU: utilizan polinomios de activaciones ReLU y otras combinaciones
de activaciones para aproximar funciones de una variable KAN. Aunque no sean tan
precisas como otros métodos, son mucho més rapidas que las KAN tradicionales, tienen
pocos parametros y mantienen muchas de las propiedades interesantes de las redes KAN
[62, 63].

3.3.2 Funcioén residual

Para implementar las redes KAN es necesario poder aproximar eficientemente funciones de
una variable. Esto se puede hacer mediante varios métodos de aproximacién de funciones:
splines, polinomios de Chebyshev, etc. Sea f : R — R la funcién obtenida por el aproximador
elegido, entonces tendriamos la siguiente definiciéon para las funciones KAN utilizadas por la
red:

¢(z) = f(x) (3.13)

Esta definicién, aunque sencilla, hace que las redes KAN sean muy costosas de entrenar en la
préactica [6, 43]. Es por esto que, aunque f ya es capaz de aproximar cualquier funcién de una
variable, se anade otra funcién adicional a las funciones KAN para mejorar su velocidad de
entrenamiento. Esta funcién es la funcién residual, que es fija (no entrenable). Ademads, tam-
bién se suele afiadir un peso para la funcion residual y otro para la funcién del aproximador,
ambos entrenables. Sea f : R +— R la funcién del aproximador, wy € R su peso, b : R — R la
funcién residual y wy € R su peso, podemos definir una funcién KAN ¢ de la siguiente forma:

d(x) = wp b(x) + wy f(x) (3.14)

Al utilizar splines como el aproximador de la red KAN tendriamos la siguiente definicién para
las funciones KAN de la red, siendo wj, wy y o; los pardametros entrenables:

P(x) = wp b(z) + wy Z o;Bi () (3.15)

34 REDES KOLMOGOROV-ARNOLD

Para las funciones residuales casi siempre se eligen funciones no lineales, ya que juegan un
papel similar al de las funciones de activacién tradicionales en las primeras fases del entre-
namiento de la red [6]. Especialmente, se suele elegir la funcién SiLU (Sigmoid Linear Unit),
con la que se tiene b(z) = /(1 + e~ ") en las ecuaciones 3.14 y 3.15.

3.4 Entrenamiento

El entrenamiento de las redes KAN es muy similar al entrenamiento de las redes neuronales
tradicionales. Al igual que estas tltimas, las redes KAN generalmente se entrenan calculando
el error observado en la salida producida por la red, comparando las salidas producidas con
las salidas esperadas para ciertos datos de entrada. A partir de este error y mediante el uso
de retropropagacién (backpropagation), es posible obtener los gradientes respecto al error de
todos los parametros de la red. Una vez calculados los gradientes, se utiliza un optimizador
para variar los parametros de la red de forma eficiente, al igual que en las redes neuronales
tradicionales (ver el apartado 2.4).

3.4.1 Retropropagacion

Al igual que con las redes tradicionales, las gradientes de las redes KAN se calculan mediante
retropropagacion. No obstante, como la estructura de las capas es diferente, los gradientes de
la red también se van a tener que calcular de forma diferente. En una red KAN tipica que
utilice splines, tal y como se puede ver en la ecuacién 3.15, tenemos los pesos entrenables
wy y wy, junto con los pardmetros entrenables de la spline ay. Para poder entrenar una red
KAN, tenemos que calcular las derivadas de estos pesos frente al error E de la red.

El primer paso para poder calcular todo esto es darse cuenta de que cualquiera de estos
parametros unicamente afecta su salida correspondiente de la capa. Por lo tanto, podemos
descomponer las derivadas de la siguiente forma, siendo wé,iyj, w%i’j y O‘gw‘,j los parametros

wy, wy y oy de la capa [de la red para la entrada i y la salida j, y xﬁ la entrada ¢ de la capa
l:

OF oE 0z

Owy, 5 Oaftt Ow;
I+1
o8 _ 9B o (3.16)
Owg; ;O™ Owy,
OF oE 0z

Oaim 8;155.“ Gaém
Al igual que se ha hecho para la seccién de backpropagation de las redes neuronales tradi-
cionales, se ha utilizado la notacién §' para denotar los deltas de la capa . Los deltas son
los valores intermedios que se propagan hacia atras entre capas (ver apartado 2.4.1 para mas
detalles), siendo definidos para las redes neuronales tradicionales como la derivada del error
respecto a la multiplicacién de las entradas y los pesos (0FE/JwTx). No obstante, para las
redes KAN necesitamos utilizar una definicién alternativa (ya que la matriz de pesos w no

3.4. ENTRENAMIENTO 35

existe), por lo que se suelen definir a partir como la derivada del error respecto a las entradas
de la capa (OF/0x). Por lo tanto, tenemos que 6! = OE/0x!.

Utilizando esta definicion, podemos simplificar las formulas de la ecuacién 3.16 sustituyendo
los términos OF /Ox por los deltas correspondientes:

+1

l l
awb,m ’ 8wb,w
OF dxttt

= ‘%‘Ha] (3.17)

Wi j Whij
[+1

o st dz;

l l
Oy 7 Oag,,

Aunque la definicién es un poco diferente, sigue siendo posible calcular directamente los deltas
de la ultima capa utilizando la funcién de pérdida. Sea L la cantidad de capas de la red (y
por lo tanto el indice de la tltima capa), y sea E’ la derivada del error respecto a las salidas
de la ultima capa, tenemos la siguiente ecuacién para calcular 6%

oF=— =E! (3.18)

! C%CZL

Para calcular los deltas de las otras capas de la red, es necesario conocer los deltas de la
capa anterior, por lo que tenemos que calcular §* a partir de 6+, Para esto, primero vamos
a obtener la relacién entre 8¢ y 61 a partir de la definicién:

OF OF 9zt dxttt
1 _ _ [+1 J
o = axl EJ: (axg.ﬂ !) B EJ: (51 Ol (3.19)

Como se puede ver en la ecuacién 3.19, para calcular §' a partir de §'T! es necesario calcular
el término 83:?“1 / (%cé. Este término dependeré del tipo de capa y de las férmulas empleadas.
Para desarrollar el resto de este apartado, a partir de aqui se asume que estamos tratando
con una capa densa KAN basada en splines sin ninguna modificaciéon particular, por lo que
se obtiene la siguiente férmula:

2t = Z% D (3.20)

. . I+1 /9.1
A partir de esto, es posible calcular axj [0z

AT NG a¢l
o = oul *Z ’] Z% (3.21)

()

Para obtener la férmula final para el cdlculo de d;, sustituimos el resultado de la ecuacién
3.21 en la ecuacién 3.19:

36 REDES KOLMOGOROV-ARNOLD

axlj—l
b= (5#1(9;4) => <5§“ Zqﬁﬁj(:ri-)) (3.22)
J i

¢ J

Podemos obtener la derivada de ¢(z) a partir de su definicién:

/

1 ! ! ! ! ! l ! 1l

;](95) = (wb,i,jb(xi) + wf,i,jfi,j(xi)> = wb,i,jb/(wi) + wf,i,jfi/,j(xi) (3.23)
A partir de las ecuaciones 3.18 y 3.22, podemos calcular todos los deltas de la red 6%, ..., 6"
secuencialmente. Una vez se han calculado los deltas de todas las capas, solo es necesario
calcular los términos 8::32“/ awllm i dxttt) 811)5% ;Y dxttly 8045% ; para obtener todas las de-
rivadas de todos los parametros de la red. Podemos calcular la derivada de wj, con un poco
de desarrollo:

833;“ B 623‘ (MJ(%D B 8¢li,j(xé) B 3wé,i,jbl($§) +w§‘,i,jf(xé)
ow .. ow.. ow . ow!

. w ..
byi,j bi,j b,1,7

=b'(zh) (3.24)

De forma muy similar también se puede calcular la derivada de wy:

Ot 08l (al) 0l (al) Ow, b (xh) +wl fl)
i = 1 = 1 = 1 = fl,j(wl) (325)
ow', . . ow ow', . . wam

Como estamos utilizando una spline como aproximador, podemos calcular las derivadas de
los parametros «aj a partir de la ecuacion 3.10. Si estuviésemos utilizando otro aproximador,
habria que calcular las derivadas de sus parametros de la forma que corresponda.

I+1 l l l l l Ll l l Ll
Onj 0wy fis (@) _ Owpiy o i Br(@i) _ Owyi;0h, k()

ol Lol
D0l 5o = Wy Br()
k7i?j k7i’j

(3.26)

Si sustituimos los resultados de las ecuaciones 3.24, 3.25 y 3.26 en la ecuacién 3.16 obtenemos
las formulas para calcular las derivadas respecto al error de todos los parametros de la red:

_ (5l<+1bl l
awll)7i7j J (':U’L)
OF
owl 0" (=) (3.27)
7Z7j
OF
— 5l'+1 L ~Bl l
8ai’i7j J wf,z,] k(xz)

Utilizando estas férmulas, podemos aplicar backpropagation de la misma forma que para las
redes neuronales tradicionales, y por lo tanto obtener todas las derivadas respecto al error de
todos los pardmetros de cualquier red KAN.

3.4. ENTRENAMIENTO 37

3.4.2 Grid extension

Una propiedad interesante de muchos de los aproximadores de funciones de una variable
utilizados en las redes KAN (splines, polinomios de Chebyshev, etc.) es que se pueden sustituir
facilmente por aproximadores con una mayor cantidad de parametros sin variar practicamente
la funcién producida por el aproximador. Por ejemplo, en el caso de estar utilizando splines,
hay que sustituir la spline por otra que tenga una grid con mayor cantidad de nodos, y
calcular para esta ultima los parametros necesarios para que la funcién producida sea lo mas
parecida posible a la producida por la spline original.

Gracias a esta técnica, es posible empezar entrenando la red con pocos parametros en cada
aproximador e ir aumentando gradualmente la cantidad de parametros a la que avanza el
entrenamiento. A todo este proceso se conoce como grid extension, o extensiéon de la grid.
Se puede ver una representacion visual del proceso de grid extension aplicado a splines en la
figura 3.7.

$(x)

7
$(x) =) cB{x)

i=0

G1=5

12
¢ =) ¢/Bi(x)
i=0

I
I
[
e R ACG N
!
i
|

I
1
1
1
I
| l grid extension
I
1
t
|
4

g S o G2=10

Figura 3.7: Representacion visual del proceso de grid extension, mostrando la transformaciéon de
una spline con G (tamaiio de la grid) = 5 a una con G = 10. La spline original tiene 7
funciones base, mientras que la spline expandida tiene 12 funciones base. Fuente: [6]

Al utilizar grid extension es posible entrenar la red con pocos parametros en las primeras
fases del entrenamiento, cosa que hace que aumente mucho la velocidad de entrenamiento
pero reduce el detalle que es capaz de representar el modelo. A partir de ahi, una vez el
modelo ya ha optimizado la estructura general de la funcién objetivo, se va aumentando poco
a poco la cantidad de pardmetros, que tiene el efecto de aumentar la cantidad de detalle que
es capaz de representar el modelo. Progresivamente, la precisién obtenida por el modelo sigue
aumentando, hasta alcanzar la cantidad 6ptima de detalle para la funcién que esté siendo
optimizada. Seguir anadiendo pardmetros después de alcanzar la cantidad 6ptima hace que
el modelo tenga parametros innecesarios y que en ciertos casos se puedan obtener peores
resultados que un modelo con la cantidad de pardmetros 6ptima [7].

Al medir regularmente el rendimiento del modelo, es posible detectar la cantidad de para-
metros 6ptima para maximizar el rendimiento del modelo sin continuar aumentando innecesa-
riamente la cantidad de pardmetros del mismo. Esto hace que el modelo final tras aplicar grid
extension durante el entrenamiento tenga un mayor rendimiento y una menor cantidad de

38 REDES KOLMOGOROV-ARNOLD

parametros, ademés de reducir también la cantidad de recursos dedicados al entrenamiento
en las primeras fases.

El procedimiento de grid extension se puede implementar de muchas formas. La més sencilla
y la utilizada en el articulo original que propuso las redes KAN es aumentar la grid en ciertas
épocas, de forma que la red tenga suficiente tiempo entre extensiones para acercarse al minimo
de pérdida local para esa cantidad de parametros. Un ejemplo de esto se puede ver en la figura
3.8.

1071 4 |

10-3

RMSE

10-5 4

__lIntgrpolation threshold ____ |

o
QS S
g ¢ g ¥ & ¢ g
0:0:070:0::‘2» S
:

107°

0 200 400 600 800 1000 1200 1400 1600 1800

Figura 3.8: Error de entrenamiento (train) y de generalizacién (test) de una red KAN entrenada con
grid extension en intervalos fijos, mostrando en rojo el punto en el que el modelo genera
el menor error de test. Se puede ver como, aunque al aumentar el tamafio de la grid el
error de entrenamiento siempre disminuye, para el error de generalizacién si que existe
un punto éptimo en el que deja de disminuir y empieza a aumentar. Fuente: [6]

Normalmente, la grid extension se suele implementar con extensiones en puntos arbitrarios del
entrenamiento, quedando normalmente a decisiéon del programador el punto exacto en la que
se realiza cada extension y el tamano de la grid que pasard a tener la red tras cada extensién.
No obstante, otros esquemas mas sofisticados que el mostrado anteriormente implementan
la grid extension de forma dindmica, aumentandola autométicamente cuando ven que el
rendimiento del modelo se ha quedado estancado con la cantidad de parametros actual.

3.4.2.1 Calculo de parametros de los aproximadores

Aunque no existe una férmula exacta para obtener los nuevos pardmetros de cada aproximador
tras realizar una grid extension, podemos utilizar métodos de optimizacion numérica que
hagan que las funciones producidas antes y después de la grid extension sean lo més parecidas
posible. Por ejemplo, podriamos minimizar el error cuadratico producido por la funcién para
los valores del conjunto de entrenamiento. Sea « los pardametros del aproximador original, 3
los pardmetros tras expandir la grid, f, y fs las salidas producidas por el aproximador para
los parametros oy 5, v X el conjunto de entrenamiento, se obtiene la siguiente férmula para
describir los parametros tras realizar la grid extension:

B =argmin Y (f3(x) — fu(2))? (3.28)
BieR z€EX

Las féormulas de f, y fs dependen de los aproximadores que se estén utilizando en la red.
En el caso de que se estén utilizando splines, a partir de la definicién obtenemos f,(z) =

3.5. PROPIEDADES 39

>, @B (x), por lo que tendriamos la siguiente expresién para obtener los nuevos parametros
tras la expansion de la grid:

2

g 3 (o) St 329
BiER ex \ i

Hay que destacar que en la ecuacién 3.29 las funciones base de f, y fg no son iguales

(Bik(z) # Bj,(x)), ya que expandir la grid modifica los nodos de la grid, y por lo tanto

también modifica las funciones base.

3.5 Propiedades

Las redes KAN, gracias a su arquitectura basada en la suma de funciones de una variable,
tienen propiedades muy interesantes al ser comparadas con las redes neuronales tradicionales.
En este aparatado se enumeran y explican las propiedades mas importantes y su utilidad en
el campo de la inteligencia artificial.

3.5.1 Interpretabilidad

Las redes KAN, al estar basadas en la suma de funciones, son mucho mas interpretables que
las redes neuronales tradicionales. Mientras que las redes neuronales tradicionales necesitan
una gran cantidad de pesos y capas para aproximar de forma precisa relaciones complejas,
las redes KAN no necesitan muchas capas, ya que son capaces de aproximar tanto de forma
local (en cada uno de los aproximadores) como global (en la red como conjunto). De esta
forma, se pueden representar relaciones complejas de forma relativamente sencilla, mientras
que con redes neuronales tradicionales esto es una tarea mucho mas compleja, y el resultado
normalmente es mucho més dificil de interpretar. Se puede ver un ejemplo de esto en la figura
3.9.

VARG

. o

Figura 3.9: KAN entrenada para aproximar la funciéon esin(me1) 43 Como se puede ver, la red ha
aprendido la estructura de la funcién, habiendo obtenido una funcién con forma de
sin(rz) para x1, otra con forma de 2 para zs, y una con forma de e para la suma de
ambas funciones anteriores. La opacidad de las funciones indica la escala de cada una.
Fuente: [6]

Esto es especialmente cierto cuando las relaciones entre las entradas y las salidas de la red
son funciones continuas, ya que la red KAN que utilicemos para aprender estas funciones
probablemente aprendera directamente la estructura matemadtica de las relaciones entre las
entradas y las salidas, en vez de aproximar estas relaciones como combinaciones de pasos
lineales y de funciones no-lineales, como hacen las redes neuronales tradicionales.

40 REDES KOLMOGOROV-ARNOLD

3.5.1.1 Regresién simbolica

Es posible aprovechar la capacidad de las redes Kolmogoérov-Arnold de aprender la estructura
interna de las relaciones entre variables para obtener la féormula de la relaciéon entre las
entradas y salidas producidas por la red. A este proceso se le conoce como regresién simbdlica.

La regresién simbdlica consiste en, basicamente, ver si las relaciones entre las entradas y
las salidas de una capa coinciden con funciones matematicas pre-definidas. De esta forma, si
vemos que todos los componentes de una red KAN estan representando funciones matemaéti-
cas, podemos obtener una férmula que represente la relacién aprendida por la red. Siguiendo
el ejemplo de la figura 3.9, podemos ver en la figura 3.10 un ejemplo del proceso a seguir para
obtener la formula simbélica de una red KAN.

e.l‘
J identificar funciones / obtener formula
sin(mz) /‘ 2

T

\/\ VYA -
\ /
\\//

. . ° .

Figura 3.10: Regresion 2simbélica para una red KAN entrenada para aproximar la funciéon
s (m21)+23 Ta opacidad de cada funcién indica la escala de la funcién. Fuente: [6]

sin(7z1)+x2

Hay que destacar que, para poder realizar regresion simbélica de forma efectiva, no tenemos
solo que detectar funciones simples de una variable, si no también funciones complejas con
varios parametros ajustables. Por ejemplo, si queremos detectar todas las posibles funciones
sinusoides, tenemos que detectar f(x) = ¢; sin(cex +¢3), por lo que tenemos 3 pardmetros (cq,
¢y y ¢3) que tenemos que ajustar para poder detectar este tipo de funciones. La cantidad de
parametros crece rapidamente con la complejidad de las funciones que queremos detectar, por
lo que la regresién simbdlica se suele limitar a funciones mateméticas relativamente simples
[64].

Aunque en teoria utilizando este método es posible obtener la funciéon de una red KAN,
es posible que no sea posible obtener una funcién matemaética para alguna de las relaciones
internas de la red KAN. En estos casos, podemos dejar indicado en la férmula resultante
la expresién exacta utilizada para calcular esa representaciéon, aunque dependiendo de la
cantidad de parametros de la grid es posible que la férmula obtenida sea enorme.

3.5.2 Aprendizaje continuo

Las redes neuronales tradicionales tienen una tendencia de olvidar los datos de aprendizaje
anteriores al aprender nueva informacion, de forma que solo se fijan en la informacién mas
reciente. Este fenémeno se conoce como Catastrophic Forgetting, o olvido catastrofico. Es
por esto que, actualmente, hay que entrenar la red con todos los datos en el proceso de
aprendizaje, ya que si no la red rdpidamente olvidara todos los patrones de los datos anteriores
v los reemplazard por los patrones de los datos nuevos.

Las redes KAN, gracias a su arquitectura y su descomposicién en funciones de una variable,

3.5. PROPIEDADES 41

son mas capaces de aprender nuevos datos sin tener que olvidar los patrones de los datos ya
aprendidos, especialmente en casos en los que los datos de entrenamiento son datos numéricos
continuos [6]. En estos casos, las redes KAN son capaces de mantener los conocimientos pre-
vios e incorporar a estos los patrones de los nuevos datos que estd aprendiendo, sin necesitar
la inclusion de todos los datos previamente aprendidos en el conjunto de entrenamiento.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

A A A A

Data

MM | MM

A
M~
Wl Dol e T

-1 0 1 -1 0 1

%
(

MLP

-1 0 101 0 1

Figura 3.11: Entrenamiento por fases de una red KAN y MLP. En cada fase las redes se han entre-
nado con una parte de los datos. Como se puede ver, la red MLP olvida los datos de
las fases anteriores, mientras que la red KAN es capaz de mantenerlos y asi aprender
correctamente el patrén de todos los datos. Fuente: [6]

Una de las mayores utilidades que puede tener esta propiedad de las redes KAN es la creacién
de sistemas que sean capaces de aprender con datos en tiempo real. Actualmente, estos
datos tienen que ser concatenados con el resto de datos del conjunto de datos, lo que hace
que incorporarlos al modelo sea costoso y lento. Utilizando técnicas que se aprovechen del
aprendizaje continuo de las redes KAN es posible que puedan construir sistemas que aprendan
constantemente fuentes de datos en tiempo real, y por lo tanto que se puedan crear modelos
que siempre dispongan de los datos més actualizados.

3.5.3 Generalizacion de los datos

A la hora de entrenar modelos de inteligencia artificial, utilizamos grandes conjuntos de datos
para intentar preparar al modelo con todos los posibles casos que podria ver. No obstante,
a la hora de utilizar estos modelos en el mundo real, en la gran mayoria de los casos es
imposible darle al modelo de machine learning todos los posibles casos. Incluso con modelos
entrenados con conjuntos de datos enormes, siempre hay casos que el modelo no ha visto
durante el entrenamiento. Es por esto que la capacidad de generalizaciéon del modelo es tan
importante, ya que para funcionar correctamente en el mundo real el modelo tiene que ser
capaz de generalizar los conocimientos aprendidos durante el entrenamiento.

El caso més extremo de esto se conoce como detecciéon fuera de la distribucion, o Out-
Of-Distribution Detection en inglés. En estos casos, se intenta que el modelo sea capaz de
generalizar datos muy diferentes con los que ha sido entrenado, ya sean datos preprocesados
de forma. diferente, datos de otro dataset, o datos sintéticos creados especificamente para
incurrir este tipo de generalizacién [65].

42 REDES KOLMOGOROV-ARNOLD

Las redes KAN tienden a generalizar los datos aprendidos mucho mejor, de forma que
los modelos entrenados resultantes son capaces de lidiar con este tipo de datos de forma
mucho maés efectiva [6], incluso teniendo una mejor capacidad de poder predecir correctamente
muestras de fuera de distribucién. Las redes KAN pueden suponer un gran avance en ese
aspecto del machine learning, permitiendo la creacién de modelos que se comporten de forma
mas robusta ante datos nuevos, incluso siendo capaces en algunos casos de extraer informacién
correcta de datos radicalmente diferentes de los datos de entrenamiento originales.

4 Implementacion en Python

Dado que las redes KAN son una arquitectura muy novedosa, con el fin de mostrar exacta-
mente su funcionamiento y dar a conocer como se podria llegar a realizar su implementacién,
se ha realizado una implementacién simple de las redes KAN en Python. Para simplificar el
codigo, se ha implementado una arquitectura secuencial en la que todas las capas de la red
son capas densas KAN, teniendo cada capa splines con grids fijas que no se pueden modificar
durante el entrenamiento. La funcion residual también es fija, siendo la funcién SiLU [66].

La implementacién se ha realizado utilizando tres clases: KANNeuron, que implementa una
unica funcién KAN junto con su spline; KANLayer, que implementa una capa densa KAN con
todas las funciones KAN correspondientes; y KAN, que implementa una red KAN completa.
Ademés de estas tres clases, se han implementado algunas funciones auxiliares que no son
parte de ninguna de las tres clases.

Durante la implementacién, se ha intentado optimizar bastante el c6digo, utilizando cuando
ha sido posible operaciones vectoriales de numpy [67], que son mucho méas rapidas que las
operaciones equivalentes en Python estdndar. No obstante, se ha decidido no realizar muchas
optimizaciones para priorizar la claridad y limpieza del cédigo, ya que el objetivo principal
de esta implementacion es mostrar el funcionamiento de las redes KAN de forma practica.

4.1 Funciones auxiliares

A lo largo de la implementacion se han utilizado unas pocas funciones auxiliares que no son
parte de ninguna de las 3 clases implementadas. Estas son la funcién sigmoide (sigmoid), la
funcién SiLU (silu) y la derivada de la funcién SiLU (silu_d). También se ha implementado
otra funcién mas (nombrada zdiv), que calcula a/b, pero devuelve 0 cuando b = 0. Esta tltima
funcién es necesaria para implementar la formula de Cox-de Boor (ver ecuacion 3.8).

def sigmoid(x):
return 1 / (1 + np.exp(-x))

def silu(x):
return np.multiply(x, sigmoid(x))

def silu_d(x): # derivada de SilLU
s = sigmoid(x)
return np.multiply(s, (1 + x*(1-s)))

def zdiv(a, b): # a/b, pero b=0 devuelve 0
with np.errstate(divide='ignore', invalid='ignore'): # ignorar warnings
c = np.true_divide(a,b)
clc == np.inf] = 0

43

44 IMPLEMENTACION EN PYTHON

return np.nan_to_num(c)

Cddigo 4.1: Funciones auxiliares utilizadas en la implementacién propia de redes KAN, que definen
las funcién base utilizada (SiLU), su derivada y la funcién zdiv, que implementa la
division de dos nimeros pero devuelve 0 cuando el divisor es 0, y se utiliza para
implementar las férmulas de Cox-de Boor

4.2 Clase KANNeuron

La clase mas bésica en la implementacién es la clase KANNeuron, que representa una Unica
funcién KAN de la red. La clase implementa la spline de la funcién KAN, calculando todos
los parametros y funciones base. Las variables de la clase son las siguientes:

e k: el grado de la spline

b: el valor de la funcion residual

b_d: el valor de la derivada de la funcién residual

e grid: la grid de la spline

e min: el valor minimo de la grid

e max: el valor maximo de la grid

e bases: el valor de las funciones base de la spline

e bases_d: el valor de las derivadas de las funciones base de la spline
e s: el valor de la spline

e s_d: el valor de la derivada de la spline

e wb: el peso que de la funcién residual

e ws: el peso de la spline

Hay que mencionar que, aunque no lo parezca a primera vista, muchas de estas variables
son vectores (b, b_d, s, s_d) o0 matrices (bases, bases_d), ya que se calculan para varios
valores en paralelo. Cabe también decir que, por razones que veremos en el apartado 4.2.1,
es necesario que grid sea un vector fila (matriz 1 X n) para que la implementacién funcione
correctamente.

4.2.1 Método spline()

El método mas complejo de la clase KANNeuron es el método spline (), que recalcula todas
las variables de la spline al recibir un nuevo conjunto de datos de entrada. Para implementarlo
de forma eficiente, se han empleado arrays de la libreria numpy, que son capaces de realizar
operaciones en paralelo de forma mucho més eficiente que las estructuras predeterminadas
de Python [67]. El cédigo de este método estd basado en el cddigo de splines de Prateek

4.2. CrAsE KANNEURON 45

Gupta [42], aunque se ha modificado bastante para adaptarlo a los requerimientos de la
implementacién actual.

El método recibe un parametro, x, que es el conjunto de valores para el que hay que calcular
valores. La funcién requiere que x sea un vector columna (matriz m x 1) para funcionar
correctamente. El método, ademds, estd basado en la férmula de Cox-de Boor (ver ecuacién
3.8). Como se puede ver en la férmula, el primer paso es calcular el caso base, B;o. Para
calcularlo en paralelo para todos los puntos, extraeremos de grid las variables ¢; v ¢;41,
utilizando la notacién de slicing de Python [68]. A partir de t; y t;41 es posible calcular B, o
con el siguiente codigo:

self .bases = (x >= self.grid[:,:-1]) * (x < self.grid[:, 1:])

Cédigo 4.2: Coédigo utilizado en la implementacion propia de las redes KAN para calcular el caso
base de la férmula recursiva Cox-de Boor, utilizado para el célculo de las splines de la
red KAN

Como grid es un vector fila y x es un vector columna, todas las operaciones que hagamos
entre ellos nos daran todos los posibles resultados. Este codigo, por lo tanto, almacena en la
variable bases una matriz de tamano m x (n — 1), de tal forma que el elemento i, de la
matriz es igual a B;o(z;) = t; < xj < t;jy1. Podemos implementar de forma similar el caso
recursivo de Cox-de Boor, calculando t;, t;i11, t;ar ¥ tirkr1 & partir de grid y calculando
B; -1y Biy1,x—1 a partir de los valores almacenados anteriormente en la variable bases.

Una vez calculados todas estas variables auxiliares, podemos facilmente calcular el nuevo
valor de bases para el caso recursivo siguiendo la férmula 3.8. Si ejecutamos el caso recursivo
k veces, entonces el valor de bases sera igual al resultado de calcular cada una de las funciones
base de la spline para cada punto en z. Para implementar las divisiones de la férmula Cox-de
Boor, se ha utilizado la funcién auxiliar zdiv().

self .bases = (x >= self.grid[:,:-1]) * (x < self.grid[:, 1:]) # caso base
for i in range(1l, self.k+1) # caso recursivo
ti = self.grid[:, :-k-1] # [0O:n-k-1]
til = self.grid[:, 1:-k] # [1:n-k]
tik self.grid[:, k:-1] # [k:n-1]
tikl = self.grid[:, k+1:] # [k+1:n]
b0 = self.bases[:, :-1]
bl = self.bases[:, 1:]
p0 = zdiv(x-ti, tik-ti) * bO
pl = zdiv(tikl-x, tikl-til) * bl
self.bases = p0 + pl

Cddigo 4.3: Cédigo utilizado para el calculo completo de las funciones base de las splines. El
cbdigo calcula de forma iterativa la formula de Cox-de Boor, utilizando un bucle para
calcular cada uno de los érdenes de la spline. Calcula también ciertas variables auxiliares
utilizadas para calcular las derivadas de las splines posteriormente

Lo 1dnico que nos queda es calcular las variables bases_d, s y s_d, que se puede hacer
aplicando las formulas 3.6, 3.8 y 3.10. El cédigo completo se puede ver a continuacién:

46 IMPLEMENTACION EN PYTHON

def spline(self, x):
self .bases = (x >= self.grid[:,:-1]) * (x < self.grid[:, 1:]) # caso base
for k in range(1l, self.k+l): # caso recursivo
ti = self.grid[:, :-k-1] # [0:m-k-1]
til = self.grid[:, 1:-k] # [1:m-k]
tik = self.grid[:, k:-1] # [k:m-1]
tikl = self.grid[:, k+1:] # [k+l:m]
b0 = self.bases[:, :-1]
bl = self.bases[:, 1:]
pO = zdiv(x-ti,tik-ti) * b0
pl = zdiv(tikl-x,tikl-til) * bl
self.bases = p0O + pl

derivadas

b0_d = zdiv(k,tik-ti) * bO
bl _d = zdiv(k,tikl-til) * b1l
self.bases_d = b0_d - bl _d

valor spline
self.s = np.sum(self.coefs * self.bases, axis=1, keepdims=True)
self.s_d = np.sum(self.coefs * self.bases_d, axis=1, keepdims=True)

Cédigo 4.4: Cédigo completo del método spline() de la clase KANNeuron, responsable de calcular
todos los valores de splines de la clase. Incorpora el cédigo visto anteriormente utilizado
para implementar la férmula Cox-de Boor, y a partir de eso calcula las funciones base
(self.bases), las derivadas de las funciones base (self.bases _d), el valor de la spline (self.s)
y el valor de la derivada de la spline (self.s_d)

4.2.2 Método train()

El método train() actualiza los pesos de la neuronas (wb, ws y coefs) a partir de un vector
de deltas y de una tasa de aprendizaje (delta y 1r).

Como se puede ver en la ecuaciéon 3.27, para calcular el error de una neurona a partir
del vector de deltas correspondiente, tenemos la expresién OE/ Owé% ;= 5;+1bl(:né). Como el
valor de b'(zl) lo almacenamos en la variable self.b al realizar el feedforward de la red (en
el método __call__), podemos calcular el error de wb ficilmente a partir de la férmula. Para
ajustar el valor de wb, calculamos el error y lo multiplicamos por 1r, la tasa de entrenamiento.
Como cada valor de delta afecta de forma independiente a wb, aplicaremos la férmula respecto
a la media del valor medio del vector delta. Sea avgDelta la variable que contiene el valor
medio de delta, nos queda el cédigo self.wb -= 1lr * avgDelta * self.b.

De forma similar, podemos actualizar ws utilizando la férmula OF/ 8wlS,iJ = 5§-+1S(x§).
Como S(z!) estd ya almacenado en la variable self.s, obtenemos el cédigo self.ws -= 1r
* avgDelta * self.s.

Por ltimo, para actualizar los coeficientes de la spline (almacenados en la variable coefs),
utilizaremos OF/ Gaf,m-’ i = 5§+1wg7i7 Bk (z1), también obtenido de la ecuacién 3.27. No obstan-
te, a diferencia que para wb y ws, cada delta afecta de forma diferente a los valores de coefs,
ya que para cada coeficiente tenemos que multiplicarlo con el resultado de evaluar su funcién

4.2. CrAsE KANNEURON 47

base de la spline (By(z}) para el coeficiente osz-’ ;)- Es por esto que, para actualizar coefs,
es necesario utilizar el producto matricial (@ en Python). Como el resultado es una matriz,
pero necesitamos un vector, utilizaremos np.squeeze para eliminar la dimensién vacia de la
matriz. Podemos ver todo el cédigo resultante en el cédigo 4.5.

def train(self, delta, 1r):
avgDelta = np.mean(delta)

self.coefs -= np.squeeze(lr * self.ws * (delta.T @ self.bases))
self.wb -= np.sum(lr * avgDelta * self.b)
self.ws —= np.sum(lr * avgDelta * self.s)

Cédigo 4.5: Cédigo del método train() de la clase KANNeuron, responsable de actualizar todos los
coeficientes de la spline (self.coefs) y los pesos (self.wb y self.ws) a partir del vector de
deltas y de la learning rate recibida

Lo tnico que queda por explicar es que el cdédigo utilizado para actualizar wb y ws devuelve
un vector de numpy de un tinico elemento, aunque wb y ws son valores numéricos. Es por esto
que se ha anadido la funcién np.sum para convertir los vectores a valores numéricos.

4.2.3 Otros métodos

El resto de métodos de la clase KANNeuron son bastante simples. Es por eso que, en vez de
explicar todo el cédigo de cada uno de estos métodos, se va a dar un pequeno resumen del
propésito de cada método en este apartado.

e Método __init__: Constructor de la clase, que inicializa todas las variables y comprue-
ba que la forma de grid y coefs es compatible.

e Método __call__: Overload del operador “()” para la clase. Al ejecutarse, calcula
todas las variables internas a partir del parametro x, utilizando el método spline()
para realizar la mayoria de los cdlculos relacionados con la spline de la neurona. Devuelve
el resultado de evaluar la neurona a partir de x.

e Método phi_d: calcula la derivada del valor de salida respecto a x, utilizando los valores
internos ya calculados por __call__y spline. Este método es necesario en las siguientes
clases para implementar otros aspectos de la red.

4.2.4 Codigo completo

El c6digo completo en Python de la clase KANNeuron se puede ver a continuacién:

class KANNeuron:
def __init__(self, grid, coefs, k, wb, ws):

self .k = k
self.wb = wb
self.ws = ws
self.coefs = coefs
self.grid = grid
self.min = np.min(grid)

48

IMPLEMENTACION EN PYTHON

self .max

= np.max(grid)

assert(grid.shape[1]-k-1 == self.coefs.shape[0])

def __call__(self, x):

self.x =

np.clip(x, self.min, self.max) # clamp to fit grid

self.spline(self.x)

self.b =
self.b_d

silu(self.x)
= silu_d(self.x)

return self.wb * self.b + self.ws * self.s

def spline(self, x):
self .bases = (x >= self.grid[:,:-1]) * (x < self.grid[:, 1:]) # k = 0

for k in
ti =
til =
tik =
tikl
b0 =
bl =
po =
pl =
self

poO_d

range(l, self.k+1):
self.grid[:, :-k-1] # [0O:m-k-1]
self.grid[:, 1:-k] # [1:m-k]
self.grid[:, k:-1] # [k:m-1]
= self.grid[:, k+1:] # [k+1:m]
self.bases[:, :-1]
self.bases[:, 1:]
zdiv(x-ti,tik-ti) * b0
zdiv(tikl-x,tik1-til) * bl

.bases = p0 + pl

zdiv(k,tik-ti) * b0

pl_d = zdiv(k,tikl-til) * bl
self.bases_d = p0_d - pl_d

self.s =
self.s_d

np.sum(self.coefs * self.bases, axis=1, keepdims=True)
= np.sum(self.coefs * self.bases_d, axis=1, keepdims=True)

def phi_d(self):
return self.wb * self.b_d + self.ws * self.s_d

def train(self, delta, 1lr):

avgDelta = np.mean(delta)

self.coefs —-= np.squeeze(lr * self.ws * (delta.T @ self.bases))
self.wb -= np.sum(lr * avgDelta * self.b)

self.ws -= np.sum(lr * avgDelta * self.s)

Cédigo 4.6: Codigo completo de la clase KANNeuron utilizada en la implementacion propia de las
redes KAN

4.3 Clase KANLayer

La siguiente clase de la implementacion es la clase KANLayer, que representa una capa densa
KAN de una red. Las variables de la clase son las siguientes:

e nIn: ndmero

de entradas de la capa

e n0Out: nimero de salidas de la capa

4.3. CLASE KANLAYER 49

e xavier: valor calculado a partir de nIn y nOut utilizado para realizar Xavier iniciali-
zation [69], que es un método para inicializar los pesos de la red de forma aleatoria

e grid: la grid de todas las neuronas de la capa. Utilizado en la inicializacién
e k: el grado de las splines de las neuronas de la capa. Utilizado en la inicializacién
e n: ntmero de coeficientes para cada neurona de la capa. Utilizado en la inicializacién

e neurons: matriz n® x n° de objetos KANNeuron, que almacena todas las neuronas de
la capa

e activations: las activaciones de todas las neuronas de la red. Se actualiza automati-
camente cada vez que se llama al método __call__

4.3.1 Método __call___()

El método __call__ es responsable de evaluar todas las neuronas de la capa para una con-
junto de valores de entrada x. Primero, el método comprueba que la matriz x contiene la
cantidad de entradas necesaria para poder ejecutar la capa (nIn). A partir de esto, calcula-
mos el valor de activations para el valor del pardmetro x, llamando al método __call__
de cada una de las KANNeuron de neurons pasandole la entrada correspondiente de x.

Una vez calculado activations, sumamos todos los valores que corresponden a la misma
salida, y comprobamos que el resultado tiene las dimensiones correctas respecto a x y que
tiene la cantidad necesaria de valores de salida (nOut).

def __call__(self, x):
assert(x.shape[-1] == self.nlIn)
self.activations = np.array([[self.neurons[i, j](x[:,[i]1])

for j in range(self.nOut)] for i in range(self.nlIn)])

result = np.squeeze(np.sum(self.activations, axis=0).T)
assert(result.shape[1] == self.nOut)
assert(result.shape[0] == x.shape[0])
return result

Cédigo 4.7: Codigo del método _ call () de la clase KANLayer, que calcula el resultado de una
capa KAN. Calcula los resultados parciales de todos los objetos KANNeuron internos
a la capa KAN, y devuelve el resultado correspondiente. También comprueba que las
dimensiones de los datos de entrada y de salida producidos son correctas, utilizando el
método assert() de Python.

4.3.2 Método train()

El método train de la clase KANLayer es responsable de calcular a partir de los deltas recibi-
dos de la capa siguiente calcular los deltas de entrada de la capa anterior en la red. También
llama al método train de todas las neuronas de neurons con los deltas correspondientes,
actualizando asf los pardmetros de todas las neuronas de la capa.

Primero es necesario asegurar que el pardmetro delta tiene dimensiones compatibles, com-
probando que coincide con la cantidad de salidas de la capa. A partir de esto, se almacena en

50 IMPLEMENTACION EN PYTHON

product el resultado de multiplicar el delta correspondiente con la derivada de cada neurona,
tal y como se especifica en la ecuacion 3.27. Entonces, sumamos los valores de product y al-
macenamos los nuevos deltas en la variable result. Por ultimo, comprobamos que los nuevos
deltas tienen las dimensiones esperadas, y llamamos al método train de todas las neuronas
en neurons con el delta correspondiente.

def train(self, deltas, 1r):
assert(deltas.shape[1] == self.nOut)
product = np.array([[np.expand_dims(deltas[:,j], 1) * self.neurons[i, jl.<+
— phi_d() for j in range(self.nOut)] for i in range(self.nIn)]).T
result = np.squeeze(np.sum(product.T, axis=1).T)
assert(result.shape[1] == self.nlIn)
assert(result.shape[0] == deltas.shape[0])

for j in range(self.nOut):
for i in range(self.nIn):
self .neurons[i, j].train(np.expand_dims(deltas[:,j], 1), 1lr)

return result

Cdédigo 4.8: Cédigo del método train() de la clase KANLayer, que actualiza todos los pesos de la capa
KAN dados los deltas y la learning rate llamando al método train de todos los objetos
KANNeuron internos. Ademds, calcula y devuelve los deltas de la capa anterior de la
red para poder realizar backpropagation utilizando el resultado devuelto por la funcién,
comprobando que las dimensiones de los deltas de entrada y salida son correctas.

4.3.3 Otros métodos

El resto de métodos de la clase KANLayer son los siguientes:

e Método initNeuron: método que inicializa una neurona mediante Xavier inicialization,
utilizando el valor self.xavier calculado en __init__. Devuelve el objeto KANNeuron
que se ha creado e inicializado.

e Método __init__: Constructor de la clase, que inicializa todas las variables y llama
multiples veces a initNeuron y guarda el resultado en la matriz neurons.

4.3.4 Cédigo completo
El cédigo completo de la clase KANLayer es el siguiente:
class KANLayer:
def initNeuron(self):
coefs = norm.rvs(scale=0.01, size=self.n)

aw = norm.rvs(scale=self.xavier, size=1) # Xavier initialization
return KANNeuron(self.grid, coefs, self.k, aw, 1)

def __init__(self, nIn, nOut, grid, k=3):

4.4. CrLAase KAN 51

self.nIn = nln

self .nOut = n0ut

self.xavier = math.sqrt(2 / (nIn + nOut))

self.grid = grid

self.k = k

self.n = grid.shape[1] - k - 1

self .neurons = np.array([[self.initNeuron() for j in range(nOut)] for i <
<~ in range(nIn)])

def __call__(self, x):

assert(x.shape[-1] == self.nln)

self.activations = np.array([[self.neurons[i,j](x[:,[i]])
for j in range(self.nOut)] for i in range(self.nIn)])

result = np.squeeze(np.sum(self.activations, axis=0).T)

assert(result.shape[1] == self.nQut)

assert(result.shape[0] == x.shapel[0])

return result

def train(self, deltas, 1r):
assert(deltas.shape[1] == self.n0ut)
product = np.array([[np.expand_dims(deltas[:, jl, 1)
* self.neurons([i, j].phi_d()
for j in range(self.nOut)] for i in range(self.nIn)]).T
result = np.squeeze(np.sum(product.T, axis=1).T)
assert(result.shape[1] == self.nlIn)
assert(result.shape[0] == deltas.shape[0])

for j in range(self.nOut):
for i in range(self.nIn):
self .neurons[i, j].train(np.expand_dims(deltas[:,j], 1), 1lr)

return result

Cddigo 4.9: Cédigo completo de la clase KANLayer utilizada en la implementacién propia de las
redes KAN.

4.4 Clase KAN

La clase KAN es la clase més simple de la implementacién, ya que la mayoria de su funcionalidad
es llamar a las funciones de las clase KANLayer. La clase KAN es una red KAN completa,
incluyendo un método para evaluar la red y otro para entrenarla ajustando sus pesos. Tiene
los siguientes métodos:

e Método __init__: inicializa la red, utilizando una lista que codifica la cantidad de
entradas y salidas de cada capa. El elemento ¢ es la cantidad de entradas de la capa 1,
mientras que el elemento i + 1 es la cantidad de salidas. A partir de esta lista, se crean
todos los objetos KANLayer y se almacenan en la variable layers.

e Método __call__: calcula el valor de la red para unos datos de entrada x, pasando los
datos por todas las capas. Devuelve el resultado obtenido.

52 IMPLEMENTACION EN PYTHON

e M¢étodo train: utilizando el dltimo valor de self.x, calcula los deltas de la ultima
capa, y va llamando al método train de todas las capas en orden inverso para realizar
backpropagation.

El cédigo completo de la clase KAN se puede ver a continuacién:

class KAN:
def __init__(self, 1, grid, k=3):
self.layers = []
for i in range(len(1)-1):
self.layers.append (KANLayer(1[i], 1[i+1], grid, k))

def __call__(self, x):
self.x = x
for layer in self.layers:
self.x = layer(self.x)
return self.x

def train(self, y, 1r):
deltas = 2x(y - self.x)
for layer in reversed(self.layers):
deltas = layer.train(deltas, lr)

Cddigo 4.10: Cddigo completo de la clase KAN utilizada en la implementacion propia de redes KAN.

5 Experimentos

En este capitulo realizamos varios experimentos con el fin de verificar algunas de las pro-
piedades de las redes KAN, y de compararlas con las redes tradicionales. Dada la falta de
experimentos respecto al tema, se ha decidido realizar experimentos para medir el rendi-
miento, eficiencia y otros aspectos de las redes convolucionales KAN. Ademds, como las redes
convolucionales son una clase de red fundamental para muchas aplicaciones, especialmente
para el procesamiento de datos estructurados (imagenes, audio, etc.), comparar las redes con-
volucionales tradicionales y las redes convolucionales KAN nos podrd dar una pista de si las
redes KAN se podrian utilizar para mejorar las redes convolucionales actuales.

Para todos los experimentos realizados en este apartado se ha utilizado el framework
pytorch [70] para definir, entrenar y evaluar los modelos. Todos los resultados obtenidos en
los experimentos se han obtenido a partir de modelos entrenados con el optimizador AdamW
[71], configurado utilizando A (weight decay) = 0.0001 y Ir (learning rate) = 0.01. Ademsds,
se ha empleado el scheduler ExponentialLR [72] para reducir la learning rate del optimizador
dependiendo de la época de entrenamiento, con v (gamma) = 0.9. Todos los modelos se han
entrenado durante 20 épocas utilizando esta configuracion, siendo entrenados inicamente con
las muestras del conjunto de datos de entrenamiento correspondiente al experimento. Para
obtener los resultados tras el entrenamiento se ha medido la tasa de aciertos y la f-score de
los modelos obtenidos con el conjunto de evaluacién del experimento.

5.1 Conjuntos de datos utilizados

Para evaluar el rendimiento de redes convolucionales, existen muchos conjunto de datos es-
tandarizados, cada uno con sus ventajas e inconvenientes [73]. Para este trabajo se ha decidido
utilizar los datasets MNIST y CIFAR-10. Se han elegido estos conjuntos de datos no solo por
su amplio uso a la hora de medir el rendimiento de modelos y arquitecturas de clasificacién de
iméagenes, sino también por su reducido coste computacional necesario para entrenar modelos
con estos datasets y medir su rendimiento.

5.1.1 MNIST

MNIST es un conjunto de datos estandar utilizado para comprobar la eficacia de arquitecturas
en tareas de clasificacién de imagenes [74]. El dataset estd formado por imagenes de 28 x 28
en blanco y negro, representando cada una un digito del 0 al 9. En la figura 5.1 podemos ver
algunos ejemplos de imagenes del conjunto de datos.

93

54 EXPERIMENTOS

al 1z 41516171219
MABRENHEOANEA

Figura 5.1: Muestras de imagenes de cada una de las 10 clases del dataset MNIST. Fuente: elabora-
cién propia

MNIST contiene 60000 imagenes de 28 x 28 pixeles con su correspondiente digito (0 — 9),
teniendo exactamente 6000 muestras para cada una de sus 10 clases. Utilizaremos 50000 de
estas muestras para entrenar los modelos, y las 10000 restantes para evaluar los resultados
de los modelos producidos por el proceso de entrenamiento.

Las imagenes de MNIST se han normalizado respecto a la media y la varianza de los valores
de los pixeles de las muestras del conjunto de entrenamiento, de forma de que la distribucién
de los valores de los pixeles del conjunto de entrenamiento tenga media 0 y varianza 1. Se
ha normalizado utilizando 0.1307 para la media y 0.3081 para la varianza. A parte de esta
normalizacién, no se ha aplicado ningtin otro pre-procesado a las imagenes de MINIST.

5.1.2 CIFAR-10

CIFAR-10 es otro conjunto de datos frecuentemente utilizado en tareas de clasificacién de
imagenes, para medir la eficiencia de modelos de una forma estdndar [75]. Al igual que
MNIST, esta formados por una gran cantidad de muestras de imégenes agrupadas en 10 clases.
Estas clases son airplane (aviones), automobile (coches), bird (pajaros), cat (gatos), deer
(ciervos), dog (perros), frog (ranas), horse (caballos), ship (barcos) y truck (camiones). En
la figura 5.2 podemos ver algunos ejemplos de iméagenes del conjunto de datos. Las imagenes
de CIFAR-10 son imégenes a color que contienen 32 x 32 pixeles. Como cada uno de los
canales de las imagenes solo puede ir de 0 a 255, las imagenes estan codificadas en RGB-8.

airplane automobile bird cat deer horse ship truck

al P
Jo)=

Figura 5.2: Muestras de imagenes de cada una de las 10 clases del dataset CIFAR-10, incluyendo (de
izquierda a derecha) imdgenes de aviones, coches, pajaros, gatos, ciervos, perros, ranas,
caballos, barcos y camiones, que son las 10 clases de imagenes del conjunto de datos.
Fuente: elaboracién propia

El conjunto de datos CIFAR-10 contiene 60000 imagenes con 32 x 32 x 3 valores cada una,
ademads de su clase correspondiente. Al igual que para MNIST, se ha dividido el dataset en
dos, dejando 50000 muestras para el conjunto de entrenamiento y 10000 para el de evaluacion.

Las imégenes de CIFAR-10 también se han normalizado, para que la distribucién de los

5.2. ARQUITECTURAS UTILIZADAS 55

valores de los pixeles tenga media 0 y varianza 1. Como cada pixel tiene 3 valores (ya que las
imégenes son RGB), tenemos que normalizar cada uno de los 3 canales de las imégenes por
separado. Se han utilizado los valores 0.4914, 0.4822 y 0.4465 para normalizar respecto a la
media; y 0.2023, 0.1994 y 0.2010 para normalizar respecto a la varianza. No se ha aplicado
ningtn otro procesamiento a las imagenes del dataset.

5.2 Arquitecturas utilizadas

Dado que MNIST y CIFAR-10 son conjuntos de datos formado por imagenes, se han utili-
zado arquitecturas con capas convolucionales bidimensionales, con el fin de que los modelos
aprendan de forma efectiva la estructura de los datos del dataset (ver apartado 2.3.2 para
mas informacién). Utilizaremos capas convolucionales bidimensionales tanto para las redes
convolucionales tradicionales como para redes KAN.

5.2.1 Redes CNN

Para las redes tradicionales, hemos utilizado una red neuronal convolucional, o CNN. La
arquitectura utilizada contiene dos capas convolucionales, que se han implementado utilizado
la clase Conv2D [76] de Pytorch. La salida de cada una de estas capas convolucionales se pasa
por una funcién de activacion ReLLU. Después de pasar el resultado de cada capa por la funcién
de activacién, la salida de las capas convolucionales se pasa también por un MaxPool2D de
tamanio 2 x 2, con el fin de mejorar la generalizacién del modelo y a la vez de reducir la
cantidad de pardmetros de las siguientes capas. Después de realizar todo esto para las dos
capas convolucionales, se aplanan los datos y se pasan por una capa densa. A esta capa densa
la sigue, al igual que a las capas convolucionales, una funcién de activaciéon ReLU. Las capas
densas utilizan la clase Linear [77] de Pytorch.

Con el fin de combatir y reducir el overfitting del modelo durante el proceso de entrena-
miento, se ha anadido una capa de Dropout después de la primera capa densa. Esta capa
anula un porcentaje de las entradas recibidas de forma aleatoria durante el entrenamiento,
haciendo que todos los valores anulados sean 0. De esta forma, la red no depende tanto de
la memorizacién de una tunica configuracion de valores, ya que en algunos casos la red no
podra depender de que estos valores no sean anulados. Esto, si se utiliza correctamente, puede
aumentar significativamente la capacidad de generalizacién del modelo. Se ha utilizado una
capa con 50% Dropout, que significa que durante el entrenamiento, cada entrada tiene cada
vez un 50% de probabilidad de ser anulada.

Después del Dropout, se ha utilizado una segunda capa densa, aunque sin funcién de acti-
vacién. De esta forma, no se limitan las posibles salidas del modelo a un rango determinado.
En la figura 5.3 se puede ver una representacién grafica de la estructura completa de los
modelos CNN utlizados en los experimentos.

56 EXPERIMENTOS

Datos de entrada
v
Conv2D + RelU
v
MaxPool2D
v
Conv2D + RelU
v
MaxPool2D
v
Linear + RelLU
v
Dropout (50%)
v
Linear
v
Salidas del modelo (10)

Figura 5.3: Estructura de las redes CNN utilizadas en los experimentos, con las partes entrenables
del modelo en azul y la entrada/salida de datos en naranja. El modelo es una red convo-
lucional bastante estandar, con dos capas convolucionales, dos capas densas, funciones
de activacion ReLLU, Max Pooling y una capa de Dropout. Fuente: elaboracién propia

Los modelos CNN, como se puede deducir a partir de la arquitectura utilizada, tienen 3
parametros configurables: la cantidad de filtros de salida de la primera capa convolucional, la
cantidad de filtros de salida de la segunda capa convolucional, y la cantidad de neuronas de
salida de la primera capa densa. El resto de los pardametros de las capas no son configurables,
ya que tienen que tener ciertos valores para que la arquitectura concuerde con los datos de
entrada recibidos y para que la red produzca los datos de salida esperados.

5.2.2 Redes Conv-KAN

Para las redes KAN, se ha empleado una estructura muy similar a la de las redes CNN,
utilizando capas convolucionales KAN para sustituir las capas convolucionales y capas KAN
densas para sustituir las capas densas tradicionales. Se ha utilizado la capa FastKANLayer
[43] para las capas KAN densas, y ConvKAN [40] para las capas convolucionales KAN. Cabe
notar que la capa FastKANLayer, con el fin de calcular los resultados més rapidamente,
utiliza una aproximacién de las funciones base de splines, basada en el uso de funciones base
radiales gaussianas [78]. Aunque este proceso no produce exactamente los mismos resultados,
obtiene resultados practicamente idénticos con un speedup de 3.33 sobre una implementacion
que no utilice esta aproximacion [79]. Para las redes convolucionales, no se ha encontrado
una implementacién que utilice funciones base radiales para aproximar las funciones KAN,
asi que se ha utilizado una capa con las funciones KAN sin esta optimizacién.

Aunque se ha intentado disefiar una estructura lo mas similar posible a la estructura
utilizada para las redes CNN, siguen habiendo algunas diferencias notables entre las dos
arquitecturas. La principal es que, como se estan utilizando capas densas y convolucionales
KAN, no es necesario (ni util) utilizar funciones de activacién tras las capas KAN. Es por

5.2. ARQUITECTURAS UTILIZADAS 57

esto que no se ha utilizado ninguna funcién de activacién, ya que las no-linealidades de las
capas KAN deberian ser suficiente para que la red pueda ser capaz de aproximar cualquier
funcion.

Otra diferencia mayor es que se ha quitado la capa Dropout. Al principio se probd a
utilizarla, pero rapidamente fue descubierto que las capas KAN densas no pueden combinarse
correctamente con capas Dropout. Esto es posible que se deba a la estructura interna de las
capas KAN, y que haga que este tipo de redes no sean muy permisivas a la pérdida de parte
de la informacién [80].

La ultima diferencia es que, aunque se ha sustituido la primera capa densa por una capa
KAN, la segunda se ha dejado como una capa densa tradicional. Esto es por que, si nos fijamos
en la estructura utilizada para las capas CNN, la segunda capa densa no tiene funcién de
activacion. Como nuestro objetivo es crear dos arquitecturas similares, cambiar la segunda
capa densa por una capa KAN es equivalente a introducir una funcién de activacién a las
segunda capa densa, que no se suele hacer en el contexto de las redes convolucionales. Es por
esto que, para que la arquitectura sea lo mas similar posible, se ha dejado la segunda capa
densa como una capa densa tradicional.

En la figura 5.4 se puede ver una representaciéon grafica de la estructura completa de los
modelos Conv-KAN utilizados en los experimentos.

Datos de entrada
v
ConvKAN
v
MaxPool2D
v
ConvKAN
v
MaxPool2D
v
FastKANLayer
v
Linear
v
Salidas del modelo (10)

Figura 5.4: Estructura de las redes Conv-KAN utilizadas en los experimentos, con las partes entre-
nables en azul y la entrada/salida en naranja. Es una adaptacién de la estructura de la
figura 5.3 para el uso de capas KAN, necesitando la eliminacién de la capa dropout y de
las funciones de activaciéon. Fuente: Elaboracién propia

Al igual que con modelos CNN, los modelos Conv-KAN producidos por la arquitectura des-
crita anteriormente tendran 3 parametros configurables: la cantidad de filtros de salida de la
primera capa convolucional, la cantidad de filtros de salida de la segunda capa convolucional,
y la cantidad de neuronas de salida de la primera capa densa.

58 EXPERIMENTOS

5.3 Eficiencia respecto al nimero de parametros

En esta seccién mediremos los resultados obtenidos en redes KAN y redes convoluciona-
les tradicionales respecto al nimero de parametros. Para esto, entrenaremos varios modelos
ConvKAN y CNN, y estudiaremos cual arquitectura produce mejores resultados para cada
numero de pardmetros del modelo.

Se han elegido 5 modelos Conv-KAN y 5 modelos CNN de varios tamanos, intentando que
cada uno de los modelos KAN tenga una cantidad comparable de parametros que el modelo
CNN correspondiente. Los modelos entrenados para realizar este experimento se pueden ver
en la tabla 5.1.

Parametros totales
MNIST CIFAR-10
CKANS 8 8 8 21378 29330
CKAN12 12 12 12 47182 63862
Conv-KAN CKAN16 16 16 16 83066 111642
CKAN20 20 20 20 129030 172670

CKAN24 24 24 24 185074 246946
CNN10 10 20 40 22370 31350

CNN15 15 30 60 49900 69970
CNN CNN20 20 40 80 88330 123890

CNN25 25 50 100 137660 193110

CNN30 30 60 120 197890 277630

Arquitectura Modelo Ci Cy D

Tabla 5.1: Arquitecturas Conv-KAN y CNN entrenadas para realizar el experimento de eficiencia
de parametros, siendo C7 la cantidad de filtros de la primera capa convolucional, Cy la
cantidad de filtros de la segunda capa convolucional y D la cantidad de neuronas de
la primera capa densa. Las capas convolucionales y densas de los modelos Conv-KAN
utilizan los valores predeterminados para el tamafio de grid, utilizando todas una grid
uniforme. Los modelos tienen cantidades diferentes de pardmetros para MNIST que para
CIFAR-10, ya que las imagenes de MNIST son de distinto tamafio que las de CIFAR-10,
y las imdgenes de CIFAR-10 son en color RGB mientras que las de MNIST son en blanco
y negro. Fuente: elaboraciéon propia

5.3.1 MNIST

Los resultados obtenidos tras entrenar los modelos descritos anteriormente para el dataset
MNIST se pueden ver en la tabla 5.2. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.5.

5.3. EFICIENCIA RESPECTO AL NUMERO DE PARAMETROS 59
Modelo Parametros totales Tasa de aciertos F-score
CKANS8 21378 98.9% 98.8%
CKAN12 47182 99.1% 99.1%
CKAN16 83066 99.1% 99.1%
CKAN20 129030 99.1% 99.1%
CKAN24 185074 99.2% 99.2%
CNN10 22370 99.1% 99.1%
CNN15 49900 99.3% 99.2%
CNN20 88330 99.3% 99.3%
CNN25 137660 99.4% 99.4%
CNN30 197890 99.4% 99.4%

Tabla 5.2: Resultados obtenidos para el dataset MNIST en el experimento de eficiencia respecto al
nimero de pardmetros tras entrenar los modelos descritos en la tabla 5.1. Los mejores
resultados en términos de tasa de aciertos y de F-score estan en negrita. Fuente: elabora-
cién propia

99.4% 4 — CNN
Conv-KAN

99.3% -

99.2%

99.1% -

Tasa de aciertos

99.0% -

98.9% -

T T
25000 50000

T T T T T T
75000 100000 125000 150000 175000 200000
Parametros

(a) Resultados en términos de tasa de aciertos

F-score

99.4% -

99.3% 7

99.2%

99.1%

99.0% 1

98.9% -

—— CNN
Conv-KAN

T T
25000 50000

T
75000

T T T T T
100000 125000 150000 175000 200000

NUmero de parametros

(b) Resultados en términos de f-score

Figura 5.5: Resultados del experimento de eficiencia respecto al niimero de parametros para el da-
taset MNIST, en términos de tasa de aciertos (a) y f-score (b) frente al nimero de
parametros de los modelos entrenados de las arquitecturas CNN y Conv-KAN. Fuente:
elaboracién propia

5.3.2 CIFAR-10

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.1 para el dataset
CIFAR-10 se pueden ver en la tabla 5.3. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.6.

60 EXPERIMENTOS

Modelo Parametros totales Tasa de aciertos F-score

CKANS 29330 59.4% 59.1%
CKAN12 63862 64.0% 64.0%
CKAN16 111642 65.7% 65.5%
CKAN20 172670 67.2% 67.2%
CKAN24 246946 67.0% 66.9%
CNN10 31350 60.7% 60.5%
CNN15 69970 67.3% 66.9%
CNN20 123890 70.8% 70.6%
CNN25 193110 71.8% 71.9%
CNN30 277630 73.3% 73.2%

Tabla 5.3: Resultados obtenidos para el dataset CIFAR-10 en el experimento de eficiencia respecto
al niimero de parametros tras entrenar los modelos descritos en la tabla 5.1. Los mejores
resultados en términos de tasa de aciertos y de F-score estan en negrita. Fuente: elabora-
cién propia

74.0%
—— CNN —— CNN

72.0% - Conv-KAN 72.0% Conv-KAN

70.0% 70.0% 4
8 es.0% 68.0% -
g o
g 66.0% E 66.0%
64.0% o801

62.0% | 62.0% 1

50.0% - 60.0%

500‘00 IDGbOD lSGbOD 200'000 250‘000 50600 lDGIOOD 150:300 200‘000 ZSGbOD
Parametros Parametros
(a) Resultados en términos de tasa de aciertos (b) Resultados en términos de f-score

Figura 5.6: Resultados del experimento de eficiencia respecto al niimero de pardmetros para el da-
taset CIFAR-10, en términos de tasa de aciertos (a) y f-score (b) frente al nimero de
pardmetros de los modelos entrenados de las arquitecturas CNN y Conv-KAN. Fuente:
elaboracién propia

5.3.3 Resultados

Como se ha podido ver en los resultados anteriores, las redes KAN son menos eficientes en
términos de parametros que las redes convolucionales tradicionales. Esta deficiencia ocurre
en todos los conjuntos de datos probados, y es bastante significativa, obteniendo las redes
convolucionales KAN un rendimiento consistentemente menor que las redes CNN para un

5.4. EFICIENCIA RESPECTO AL NUMERO DE DATOS DE ENTRENAMIENTO 61

numero similar de pardmetros, tanto en términos de tasa de aciertos como en términos de
f-score.

Esto se debe, principalmente, a la gran cantidad de pardmetros que necesitan las redes
KAN para definir las capas densas, ya que las redes KAN necesitan mayor cantidad de
pardmetros para cada neurona. En una red tradicional, una capa densa de N entradas y
M salidas necesitard O(nm) pardametros. No obstante, en un capa KAN, una capa densa
necesitard una cantidad de pardmetros proporcional a la cantidad de nodos de la grid g,
por lo que esta capa necesitard O(nm g) pardmetros. Aunque el valor g no suele ser sea
demasiado alto (generalmente estd entre 4 y 32), esto sigue significando que las redes KAN
suelen utilizar mucho més parametros para la misma arquitectura que la red tradicional
equivalente. Es por esto que, para compararlas en términos de parametros, se ha tenido que
reducir la arquitectura de las redes KAN (especialmente en la capa lineal), ademés de utilizar
un tamaiio de grid bastante reducido (4), cosa que ha empeorado bastante el rendimiento de
los modelos utilizados en este experimento.

5.4 Eficiencia respecto al nimero de datos de entrenamiento

Como ya se ha explicado en el apartado 2.5.4.2, a la hora de entrenar modelos de machine
learning es preferible utilizar arquitecturas y modelos que necesiten una menor cantidad de
datos de entrenamiento para obtener resultados buenos. Para intentar medir esta propiedad,
entrenaremos los modelos utilizando tnicamente una fraccién de los datos de entrenamiento
del los conjuntos de datos y estudiaremos los resultados obtenidos. Como cada modelo ha de
ser entrenado varias veces, solo realizaremos el experimento con 2 modelos CNN y 2 modelos
Conv-KAN. Estos modelos estan descritos en la tabla 5.4.

Arquitectura Modelo Ci Cy D
CKANS 8 16 32
CKAN16 16 32 64
CNNB 8 16 32
CNNI16 16 32 64

Conv-KAN

CNN

Tabla 5.4: Arquitecturas Conv-KAN y CNN entrenadas para realizar el experimento de eficiencia de
datos de entrenamiento, siendo C; la cantidad de filtros de la primera capa convolucional,
C5 la cantidad de filtros de la segunda capa convolucional, y D la cantidad de neuronas
de la primera capa densa. Fuente: elaboracién propia

Para cada modelo de la tabla anterior, se va a entrenar el modelo utilizando 5, 10, 25, 50,
75 0 100% de los datos de entrenamiento totales. Para cada uno de estos entrenamientos,
se medird el rendimiento obtenido tras el entrenamiento en términos de tasa de aciertos y
de f-score, con el fin de medir cudl arquitectura es mas eficiente en términos de datos de
entrenamiento.

62 EXPERIMENTOS

5.4.1 MNIST

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.4 para el dataset
MNIST se pueden ver en la tabla 5.5. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.7.

Datos de entrenamiento utilizados (%)
5% 10% 25% 50% 75% 100%
Tasa de aciertos 96.3% 97.3% 98.5% 98.7% 99.0% 98.9%

Modelo Métrica

CKANS
F-score 96.3% 97.2% 98.5% 98.7% 99.0% 98.9%
Tasa de aciertos 96.6% 97.7% 98.6% 98.9% 99.0% 99.2%
CKANI16
F-score 96.5% 97.7% 98.6% 98.9% 99.0% 99.2%
CNNS Tasa de aciertos 95.1% 96.4% 97.4% 982% 98.4% 98.7%
F-score 95.0% 96.4% 97.4% 98.2% 98.4% 98.7%
ONNIG Tasa de aciertos 96.4% 97.6% 98.8% 98.8% 99.1% 99.1%
F-score 96.4% 97.5% 98.7% 98.8% 99.1% 99.1%

Tabla 5.5: Resultados obtenidos para el dataset MNIST en el experimento de eficiencia respecto al
numero de datos de entrenamiento, tras entrenar los modelos descritos en la tabla 5.4 con
un 5, 10, 25, 50, 75 y 100% de las muestras del conjunto de datos de entrenamiento. Los
mejores resultados en términos de tasa de aciertos y f-score para cada porcentaje de datos
de entrenamiento se han resaltado en negrita. Fuente: elaboracién propia

99% - 99% ~

98%

98%

97% -

Tasa de aciertos

96% -

—— CKANS
CKAN16
—— CNNB8

o5% 1 —— CNN16 95% 4
ZDI 40‘ 60“’1& BD‘”A: 106 Zd% 40“’/1) 66% Bd% lﬂ‘lil"/b
Datos de entrenamiento utilizados Datos de entrenamiento utilizados
(a) Resultados en términos de tasa de aciertos (b) Resultados en términos de f-score

Figura 5.7: Resultados obtenidos para el dataset MNIST en el experimento de eficiencia respecto a la
cantidad de datos de entrenamiento, mostrando el rendimiento de los modelos obtenidos
en términos de tasa de aciertos (a) y f-score (b) frente al porcentaje de datos utilizado
durante el entrenamiento. Fuente: elaboracion propia

5.4. EFICIENCIA RESPECTO AL NUMERO DE DATOS DE ENTRENAMIENTO 63

5.4.2 CIFAR-10

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.4 para el dataset
CIFAR-10 se pueden ver en la tabla 5.6. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.8.

Datos de entrenamiento utilizados (%)

5% 10% 25% 50% 75% 100%
Tasa de aciertos 41.4% 47.7% 53.7% 585% 61.3% 62.5%

Modelo Métrica

CKANS
F-score 41.2% 47.2% 53.6% 57.9% 61.3% 62.3%
Tasa de aciertos 42.2% 49.0% 55.2% 61.3% 65.2% 64.8%
CKAN16
F-score 41.7% 48.5% 55.1% 61.5% 65.2% 64.7%
ONNS Tasa de aciertos 41.5% 43.6% 49.9% 54.4% 56.2% 59.2%
F-score 39.1% 41.6% 48.9% 53.9% 55.5% 58.7%
ONNIG Tasa de aciertos 44.9% 51.4% 60.4% 64.1% 65.9% 67.7%
F-score 44.0% 50.2% 59.9% 63.9% 65.7% 67.6%

Tabla 5.6: Resultados obtenidos para el dataset CIFAR-10 en el experimento de eficiencia respecto
al nimero de datos de entrenamiento, tras entrenar los modelos descritos en la tabla 5.4
con un 5, 10, 25, 50, 75 y 100% de las muestras del conjunto de datos de entrenamiento.
Los mejores resultados en términos de tasa de aciertos y f-score para cada porcentaje de
datos de entrenamiento se han resaltado en negrita. Fuente: elaboracién propia

65% - 65% -

60%

Tasa de aciertos

50% 4

45%
45% -

40% |

T T T T T T T T T T
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
Datos de entrenamiento utilizados Datos de entrenamiento utilizados

(a) Resultados en términos de tasa de aciertos (b) Resultados en términos de f-score

Figura 5.8: Resultados obtenidos para el dataset CIFAR-10 en el experimento de eficiencia respec-
to a la cantidad de datos de entrenamiento, mostrando el rendimiento de los modelos
obtenidos en términos de tasa de aciertos (a) y f-score (b) frente al porcentaje de datos
utilizado durante el entrenamiento. Fuente: elaboracién propia

64 EXPERIMENTOS

5.4.3 Resultados

Como se puede ver en la tabla 5.5, en algunos casos para el dataset MNIST las redes con-
volucionales KAN obtienen un mejor rendimiento que las redes convolucionales tradicionales
dada la misma fraccién del conjunto de datos de entrenamiento del dataset MNIST. No obs-
tante, aunque en algunos casos se haya obtenido un rendimiento mayor, los resultados entre
los modelos CKAN16 y CNN16 son tan similares que no se puede concluir con certeza que las
redes convolucionales tengan un mayor rendimiento para el dataset MNIST en términos de
eficiencia de datos de entrenamiento para ninguna de las fracciones de datos comprobadas.
La tinica cosa que se observa de forma clara es que el modelo CNN8 obtiene resultados signi-
ficativamente peores que el resto de modelos, incluyendo el modelo CKANS, cosa que puede
indicar que las redes convolucionales KAN tengan una mayor eficiencia en términos de datos
de entrenamiento para modelos de menor tamano.

En los resultados para CIFAR-10, podemos ver que aunque los modelos CKAN16 y CKANS
obtienen resultados bastante mejores que el modelo CNNS8, el modelo CNN16 obtiene un
mayor rendimiento que ambos modelos Conv-KAN para todas las fracciones de datos de
entrenamiento comprobadas. Aunque es posible que las redes KAN obtengan resultados con
mayor rendimiento para modelos reducidos, este resultado indica claramente que la ventaja
que existe no necesariamente se generaliza a modelos de mayor tamafio, hasta el punto de
que las redes convolucionales tradicionales parecen tener mejor rendimiento que las redes
convolucionales KAN para modelos de mayor tamarfio.

5.5 Calibracion

La calibracién de un modelo indica la correlaciéon entre la confianza producida por un modelo
y la probabilidad real de que una muestra sea correcta (ver apartado 2.5.5) para méas detalles.
Dado que obtener modelos con buena calibracién puede ser muy importante dependiendo de
la aplicacion del caso de uso del modelo, vamos a medir la calibracién de modelos de arquitec-
turas Conv-KAN y compararla con la calibraciéon obtenida por los modelos convolucionales
tradicionales. Se medira la calibracién de los modelos descritos en la tabla 5.7.

Arquitectura Modelo cCi Cy D
CKANS 8 16 32
CKAN16 16 32 64
CNNS8 8 16 32

CNN16 16 32 64

Conv-KAN

CNN

Tabla 5.7: Arquitecturas Conv-KAN y CNN entrenadas para realizar el experimento de calibracién,
siendo C1 la cantidad de filtros de la primera capa convolucional, Cs la cantidad de filtros
de la segunda capa convolucional, y D la cantidad de neuronas de la primera capa densa.
Fuente: elaboracién propia

Para cada uno de los 4 modelos de la tabla 5.7, mediremos la calibracién obtenida tras el
entrenamiento, utilizando tanto el Error de Calibracién Esperado (ECE) como la tasa de

5.5. CALIBRACION 65

aciertos respecto al intervalo de confianza (ver apartados 2.5.5.1 y 2.5.5.2). Para medir y
calcular ambas métricas se han dividido las muestras de los conjuntos de datos de evaluacién
en 5 grupos uniformes en funcién de la confianza predecida por el modelo para cada muestra,
de forma que se han agrupado las muestras en los grupos de 0 — 20%, 20 — 40%, 40 — 60%,
60 — 80% y 80 — 100% en funcién de su confianza.

5.5.1 MNIST

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.1 para el dataset
MNIST se pueden ver en la tabla 5.2. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.5.

Tasa de aciertos respecto al intervalo de confianza

0—20% 20—40% 40—60% 60—80% 80— 100%

Modelo ECE

CKANS 0.70% — — 40.0% 53.7% 99.3%
CKAN16 0.51% — 0.0% 47.4% 55.8% 99.5%
CNNS8 0.39% — 25.0% 41.4% 62.9% 99.5%
CNN16 0.44% — 0.0% 61.4% 51.2% 99.5%

Tabla 5.8: Resultados obtenidos en el experimento de calibracién para el dataset MNIST, mostrando
el ECE obtenido de cada modelo junto con la tasa de aciertos obtenida respecto a la
probabilidad predecida media. Para el calculo del ECE y de la tasa de aciertos respecto
a la confianza se han agrupado las muestras en 5 grupos, con intervalos de confianzas
0—20%, 20 — 40%, 40 — 60%, 60 — 80% y 80 — 100%. Las celdas vacias de la tabla indican
que no hay ninguna muestra en su intervalo de confianza para el modelo correspondiente.
Fuente: elaboracién propia

66

EXPERIMENTOS

Tasa de aciertos media

100%

80% -

60%

0% 4

—— CKANSB 10000 1 mmm CKANS
CKAN16 CKAN16
—— CNN8 By BB CNN8
— CNN16 5000 | ™ CNN16
----- perfectamente calibrado
0
8
7
L 6000
E
@
o
2
£ 40004
=
zZ
2000 A
T T T T 0 T T T f——
0% 20% 40% 60% 80% 100% 0-20% 20 - 40% 40 - 60% 60 - 80% 80 - 100%

Confianza media Intervalo de confianza

(a) Curvas de calibracién (b) Cantidad de muestras

Figura 5.9: Graficas que visualizan los resultados del experimento de calibracién para el dataset

MNIST, mostrando las curvas de calibracién obtenidas para cada modelo junto con la
cantidad de muestras que pertenecen a cada intervalo, tras agrupar las muestras en 5
grupos, con intervalos de confianzas 0 — 20%, 20 —40%, 40 — 60%, 60 —80% y 80 — 100%.
En la grafica de curvas de calibracién también se muestra la linea de calibracién 6ptima,
en la que la tasa de aciertos media de un modelo coincide con la confianza producida.
Fuente: elaboracién propia

5.5.2 CIFAR-10

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.1 para el dataset
CIFAR-10 se pueden ver en la tabla 5.3. Se han representado los resultados obtenidos respecto
a la tasa de aciertos y respecto a la f-score en la figura 5.6.

Modelo ECE

Tasa de aciertos respecto al intervalo de confianza

0—-20% 20—40% 40—-60% 60—80% 80— 100%

CKAN8 11.42% — 27.3% 39.8% 53.7% 83.4%
CKAN16 19.81% — 27.3% 34.8% 43.8% 76.9%
CNNB 10.78% 24.8% 40.6% 61.3% 82.9% 93.8%
CNN16 4.38% 20.7% 36.3% 56.7% 76.4% 92.9%

Tabla 5.9: Resultados obtenidos en el experimento de calibracién para el dataset CIFAR-10, mos-

trando el ECE obtenido de cada modelo junto con la tasa de aciertos obtenida respecto a
la probabilidad predecida media. Para el cdlculo del ECE y de la tasa de aciertos respecto
a la confianza se han agrupado las muestras en 5 grupos, con intervalos de confianzas
0—20%, 20 — 40%, 40 — 60%, 60 — 80% y 80 — 100%. Las celdas vacias de la tabla indican
que no hay ninguna muestra en su intervalo de confianza para el modelo correspondiente.
Fuente: elaboracién propia

5.6. APRENDIZAJE CONTINUO 67

100%

7000

—— CKANS

—— CKAN16

— CNN8

80% 1 —— CNN16

------ Perfectamente calibrado

@
2
-3

Tasa de aciertos media
Numero de muestras

0% 4~ ‘ ‘ : ‘
0% 20% 40% 60% 80% 100% 20 - 40% 40 - 60% 60 - 80% 80 -100%
Confianza media Intervalo de confianza

(a) Curvas de calibracién (b) Cantidad de muestras

Figura 5.10: Gréficas que visualizan los resultados del experimento de calibracién para el dataset
CIFAR-10, mostrando las curvas de calibracién obtenidas para cada modelo junto con
la cantidad de muestras que pertenecen a cada intervalo, tras agrupar las muestras en 5
grupos, con intervalos de confianzas 0 —20%, 20 —40%, 40 —60%, 60 —80% y 80— 100%.
En la gréafica de curvas de calibracién también se muestra la linea de calibracién 6ptima,
en la que la tasa de aciertos media de un modelo coincide con la confianza producida.
Fuente: elaboracién propia

5.5.3 Resultados

Los resultados obtenidos con el dataset MNIST, aunque todos los modelos obtienen calibra-
cién muy buena, estdn muy distorsionados dado el rendimiento de los modelos, obteniendo
todos un tasa de aciertos media superior al 98%. Esto, como se puede ver en la figura 5.9,
causa una tremenda distorsién en las muestras, haciendo que la gran mayoria estén en un
unico intervalo de confianza.

Es por esto que, como los resultados en MNIST no van a ser demasiado indicativos, vamos
a centrarnos especialmente en los resultados para el dataset CIFAR-10. En estos resultados
se puede ver que obtenemos curvas de calibracién mucho mas estables, junto con una distri-
bucién de muestras mucho mas equilibrada en cada intervalo de confianza. A partir de estos
resultados, podemos ver que los modelos Conv-KAN tienden a producir una mayor confianza
que la tasa de aciertos, mientras que los modelos CNN tienden a producir una menor confian-
za que tasa de aciertos para el dataset CIFAR-10. No obstante, podemos ver que las curvas
de calibracion de los modelos CNN son mucho mas cercanas a la linea ideal de calibracién
que las curvas de los modelos Conv-KAN. Ademads, se puede observar en la tabla 5.9 que los
modelos CNN también tienen un error de calibracién esperado (ECE) mucho menor que los
modelos Conv-KAN.

5.6 Aprendizaje continuo
Actualmente, los modelos de inteligencia artificial no tienden mucha capacidad para retener

informacién ya aprendida si no se refuerza continuamente esta informacién en el entrena-
miento (ver apartado 2.5.6 para més informacién). No obstante, las redes KAN formadas

68 EXPERIMENTOS

exclusivamente por capas densas KAN son capaces de en ciertos casos retener bastante bien
la informacién aprendida previamente [6]. Para comprobar si esta propiedad se extiende a
las redes convolucionales KAN, disefiaremos un experimento con el fin de intentar comparar
las capacidades de realizar aprendizaje continuo y de retener informacién de las redes con-
volucionales KAN frente a las redes CNN. Los modelos utilizados de ambas arquitecturas se
pueden ver en la tabla 5.10.

Arquitectura Modelo Ci Cy D
CKANS 8 16 32

CKAN16 16 32 64
CNN8 8§ 16 32

CNN16 16 32 64

Conv-KAN

CNN

Tabla 5.10: Modelos Conv-KAN y CNN utilizados para el experimento de aprendizaje continuo,
siendo C la cantidad de filtros de la primera capa convolucional, Cs la cantidad de
filtros de la segunda capa convolucional, y D la cantidad de neuronas de la primera capa
densa. Fuente: elaboracién propia

El experimento de aprendizaje continuo consiste en entrenar los modelos en fases, de manera
que en cada fase solo reciben un subconjunto de las clases totales a aprender. Como MNIST
y CIFAR-10 tienen 10 clases, dividiremos el entrenamiento en 5 fases, de forma que el modelo
serd entrenado con 2 de las 10 clases en cada fase del entrenamiento. Para evaluar lo bien que
retiene informacién tras cada fase el modelo se ha evaluado con las muestras de evaluacién
de todas las clases ya vistas, incluyendo las clases de fases anteriores. Se puede ver las clases
exactas utilizadas para el entrenamiento y la evaluacion para cada fase en la tabla 5.11.

Fase Clases de entrenamiento Clases de evaluacion
Fase 1 Oy1 Oyl

Fase 2 2y 3 0-3

Fase 3 4y5 0-5

Fase 4 6y 7 0-—7

Fase 5 8y 9 0 —9 (todas)

Tabla 5.11: Clases utilizadas para el entrenamiento y evaluacién en cada fase para el experimento
de aprendizaje continuo. En cada fase se ha entrenado el modelo con dos clases no vistas
anteriormente, y se ha evaluado el modelo con todas las clases de esa fase y de las fases
anteriores, de forma que al llegar a la ultima fase el modelo se evaliia con todas las clases.
Fuente: elaboracién propia

5.6. APRENDIZAJE CONTINUO

5.6.1 MNIST

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.10 para el dataset
MNIST se pueden ver en la tabla 5.12. Se han representado los resultados obtenidos respecto

a la tasa de aciertos y respecto a la f-score en la figura 5.11.

Modelo Métrica

Fase de entrenamiento

Fasel Fase2 VFase3 Fased Faseb
Tasa de aciertos 99.9% 49.0% 31.1% 24.8% 19.7%
CKANS
F-score 99.9% 34.0% 15.9% 10.1% 6.7%
Tasa de aciertos 99.9% 49.1% 31.1% 24.7% 19.8%
CKAN16
F-score 99.9% 34.3% 15.8% 10.0% 6.6%
ONN Tasa de aciertos 99.8% 48.8% 31.0% 12.9% 10.2%
8
F-score 99.8% 33.0% 16.2% 3.2% 2.1%
ONN Tasa de aciertos 99.9% 49.0% 31.1% 24.8% 13.0%
16
F-score 99.9% 34.5% 15.8% 10.0% 6.5%

Tabla 5.12: Resultados obtenidos en el experimento de aprendizaje continuo para el conjunto de
datos MNIST tras cada una de las 5 fases de entrenamiento descritas en la tabla 5.11.
Los mejores resultados obtenidos en términos de tasa de aciertos y de f-score para cada

fase de entrenamiento estan en negrita. Fuente: elaboracion propia

100% -

80%

60%

Tasa de aciertos

Fase de entrenamiento

(a) Resultados en términos de tasa de aciertos

Figura 5.11: Visualizacién de los resultados obtenidos en el experimento de aprendizaje continuo
para el conjunto de datos MNIST para cada uno de los modelos entrenados. Los re-
sultados se han visualizado en términos de tasa de aciertos (a) y de f-score (b) para
cada una de las 5 fases de entrenamiento descritas en la tabla 5.11. Fuente: elaboracién

propia

100% -

60%

F-score

0%

(b) Resultados en términos de f-score

Fase de entrenamiento

70

EXPERIMENTOS

5.6.2 CIFAR-10

Los resultados obtenidos tras entrenar los modelos descritos en la tabla 5.10 para el data-
set CIFAR-10 se pueden ver en la tabla 5.13. Se han representado los resultados obtenidos

respecto a la tasa de aciertos y respecto a la f-score en la figura 5.12.

Modelo Métrica

Fase de entrenamiento

Fasel Fase2 VFase3 Fased Fasebd
Tasa de aciertos 93.6% 40.2% 28.7% 24.0% 18.5%
CKANS
F-score 93.5% 26.9% 14.4% 9.7% 6.4%
Tasa de aciertos 93.6% 40.5% 29.3% 23.8% 18.4%
CKAN16
F-score 93.5% 272% 14.7"% 9.5% 6.4%
ONNS Tasa de aciertos 92.1% 39.7% 28.8% 23.0% 16.3%
F-score 92.0% 26.6% 14.5% 9.3% 6.2%
ONN Tasa de aciertos 93.9% 41.6% 29.1% 23.8% 10.1%
16
F-score 93.9% 27.9% 14.6% 9.6% 1.9%

Tabla 5.13: Resultados obtenidos en el experimento de aprendizaje continuo para el conjunto de
datos CIFAR-10 tras cada una de las 5 fases de entrenamiento descritas en la tabla 5.11.
Los mejores resultados obtenidos en términos de tasa de aciertos y de f-score para cada

fase de entrenamiento estan en negrita. Fuente: elaboracion propia

80%

o
<
&

Tasa de aciertos

»
S
®

20%

Fase de entrenamiento

(a) Resultados en términos de tasa de aciertos

Figura 5.12: Visualizacién de los resultados obtenidos en el experimento de aprendizaje continuo
para el conjunto de datos CIFAR-10 para cada uno de los modelos entrenados. Los
resultados se han visualizado en términos de tasa de aciertos (a) y de f-score (b) para
cada una de las 5 fases de entrenamiento descritas en la tabla 5.11. Fuente: elaboracién

propia

80%

60%

F-score

40%

20% -

0%

(b) Resultados en términos de f-score

Fase de entrenamiento

5.6. APRENDIZAJE CONTINUO 71

5.6.3 Resultados

Como se puede ver, en ambos conjuntos de datos se observa que las redes convolucionales
KAN suelen producir mejores resultados en las fases posteriores del entrenamiento. Aunque
esto pueda significar que las redes Conv-KAN tengan mejor capacidad de retencién de infor-
macion que las redes CNN, no se observa una retencién de informacién significativa, como
se ha observado en redes KAN no convolucionales. Por lo tanto, los experimentos realizados
parecen indicar que las redes KAN pierden su capacidad de retener informacién aprendida
anteriormente al utilizar capas KAN convolucionales.

6 Conclusiones

Como se ha podido ver durante el desarrollo de este trabajo, las redes Kolmogoérov-Arnold
son un tipo de red neuronal fundamentalmente diferente a las redes neuronales tradicionales.
Se ha visto como se forman las capas densas y convolucionales KAN a partir de la compo-
sicién de funciones base, explicando toda la teoria matemética necesaria para entender su
funcionamiento correctamente. Ademés, también se han estudiado las diferentes estructuras
matematicas existentes para formar la base de las redes KAN, aunque durante el desarrollo
del trabajo nos hemos centrado principalmente en las splines, dado que son las estructuras
utilizadas maés frecuentemente en las redes KAN, ademaés también de ser las utilizadas en el
trabajo original que propuso las redes KAN.

Con los experimentos, se ha intentado verificar si muchas de las propiedades que tienen
las redes KAN densas se mantienen a la hora de usar redes KAN convolucionales. En estos
experimentos, se ha cuantificado la eficiencia respecto al nlimero de pardmetros del modelo,
la eficiencia respecto al nimero de datos de entrenamiento, la calibracién y la capacidad
de retencién de informacién en tareas de aprendizaje continuo del modelo. Tras medir estas
propiedades para varios modelos convolucionales KAN y compararlas con modelos convolu-
cionales tradicionales, no se han observado muchas de las propiedades observadas en las redes
KAN densas.

Aunque este tipo de redes ain son experimentales, son un tipo de arquitectura muy no-
vedosa e interesante, que tiene potencial para revolucionar el campo si ciertos aspectos de
la arquitectura KAN se generalizan a modelos més grandes. Son de especial importancia la
capacidad de retencién de informacion en tareas de aprendizaje continuo y la interpretabi-
lidad de los modelos, que son dos propiedades que carecen los modelos contemporaneos de
machine learning. Dado lo recientes que son este tipo de redes y que atun la gran mayoria
de experimentos se han realizado con modelos de pequefio tamano, habrd que ver si estas
propiedades se pueden utilizar con modelos de mayor tamaio.

6.1 Futuras lineas de investigacion

Durante la realizacién de este trabajo se han analizado y estudiado muchas de las aplicaciones
y propiedades de las redes Kolmogoérov-Arnold. No obstante, principalmente por la falta de
recursos de computacién, hemos tenido que limitar los experimentos a una unica faceta de
las redes KAN: las redes KAN convolucionales.

A continuacién se enumeran algunas de las aplicaciones potenciales de las redes KAN que
no se han analizado o explicado, junto con un pequenio resumen de su posible utilidad:

o Analizar redes KAN basadas en otras estructuras matematicas: aunque existan muchas
estructuras matematicas que se puedan aplicar a las redes KAN, no existe mucha li-
teratura analizando las ventajas y desventajas especificas de cada una, y que mida el
rendimiento de cada una para varias aplicaciones.

73

74

CONCLUSIONES

6.2

Probar otras arquitecturas Conv-KAN: en los experimentos de este trabajo se ha utiliza-
do una arquitectura Conv-KAN basada en las redes CNN tradicionales, estructurando
las capas de forma similar a las redes convolucionales basadas en capas MLP. Es posible
que otras estructuras, como el uso exclusivo de capas convolucionales o la incorporacién
de otras técnicas vistas en otros tipos de redes puedan mejorar el rendimiento y/o la
eficiencia obtenidos.

Redes KAN recurrentes: Al igual que las redes KAN se pueden extender a las re-
des convolucionales, también se pueden extender a las redes recurrentes o RNNs. Co-
mo actualmente no existen implementaciones de redes KAN recurrentes, se necesitaria
adaptar las arquitecturas LSTM [81] o BRNN [82] a las redes KAN para comprobar su
funcionamiento. Esto, ademads, permitiria la construccién de redes KAN convolucinales-
recurrentes, o redes CRNN que utilicen capas KAN para su funcionamiento. No obs-
tante, como no existen implementaciones o estudios anteriores, seria necesario elaborar
una implementacién para comprobar las propiedades de las redes KAN recurrentes.

Transformers KAN: Al igual que para las redes recurrentes, también es posible extender
la arquitectura KAN a los transformers. A diferencia que para las redes recurrentes, si
que existen estudios e implementaciones de transformers KAN [83, 84, 85]. Igualmente,
como la literatura para este tipo de arquitecturas es muy limitada, se podria realizar un
estudio comparativo similar al realizado en este trabajo para las redes convolucionales
KAN, analizando el potencial de las arquitecturas que combinan las redes KAN con los
transformers.

Estudiar como adaptar las capas Dropout para su funcionamiento en las redes KAN,
para que funcionen de forma efectiva en las arquitecturas que utilicen capas KAN densas
o convolucionales [80].

Estudiar el uso de las redes KAN para otras tareas de inteligencia artificial, como tareas
de regresiéon numérica, detecciéon de objetos, segmentacion, etc.; explorando como se
comportan las redes KAN a la hora de ser entrenadas para realizar este tipo de tareas
y de si las propiedades comunmente asociadas con las redes KAN se mantienen en este
tipo de tareas.

Estudiar formas alternativas de entrenar redes KAN para aprovechar al maximo sus
propiedades, como el uso de grid-extension estatico o dindmico [6], o el uso de algoritmos
de entrenamiento disefiados especificamente para las redes KAN, como su construccién
utilizando el método de Newton-Kaczmarz [86].

Cumplimiento de objetivos

En cuanto a los objetivos del trabajo, podemos concluir lo siguiente:

Hacer una revisién de la base teérica de las redes KAN: se ha realizado una
explicaciéon de toda la base tedrica y matemadtica de las redes KAN, explicando los
conocimientos necesarios para poder entender su funcionamiento, incluyendo el cono-
cimiento de machine learning e inteligencia artificial necesario para entender las redes

6.3. CONCLUSIONES PERSONALES 75

6.3

KAN y como se diferencian de las redes neuronales tradicionales. Ademés de esto, se
han estudiado ciertas técnicas de entrenamiento especificas a las redes KAN y las mu-
chas alternativas que existen para implementar la estructura interna de las capas de las
redes KAN.

Hacer una implementaciéon propia de un modelo KAN: se ha realizado una
implementacién de un modelo KAN en el apartado 4, con el fin de ver como se podria
llegar a realizar una implementacion de las arquitecturas KAN. Se ha decidido realizar
una implementacién sencilla y sin muchas opciones a propésito, para poder mostrar las
ideas y las estructuras requeridas para llegar a realizar una implementacion claramen-
te, al no necesitar complicar demasiado el cédigo al realizar una implementacién mas
general. Para que la implementacion sea razonablemente eficiente, aunque no se han
realizado optimizaciones que compliquen demasiado el cédigo, se han utilizado estruc-
turas de numpy [67] siempre que ha sido posible con el fin de calcular eficientemente los
parametros de la red.

Evaluar y comparar el rendimiento ante alternativas: en el apartado 5 se han
realizado multiples experimentos con el fin de confirmar y comprobar el rendimiento y la
eficiencia de las redes KAN convolucionales, comparando los resultados de la redes KAN
convolucionales con los resultados obtenidos por las redes convolucionales tradicionales.
Para poder entender todo este proceso, en el apartado 2.5 se han explicado muchas de
las técnicas de evaluacién de modelos utilizadas en los experimentos, prestando especial
atencién a las métricas utilizadas en tareas de clasificacion de imagenes, ya que este
tipo de tareas son las que se han utilizado para realizar los experimentos.

Hacer un analisis de ventajas y limitaciones de las redes KAN: en muchas
de las secciones del capitulo 3, se han mencionado muchas de las ventajas inherentes
a las redes KAN, citando estudios previos que han investigado en detalle estas propie-
dades de las redes KAN, como su mayor eficiencia a la hora de predecir ciertos datos,
su mayor robustez en tareas de aprendizaje continuo o su interpretabilidad. Ademas,
también se han enumerado las multiples limitaciones, como la cantidad de pardmetros
que requieren, el tiempo requerido para su uso y entrenamiento, o que algunas de las
técnicas estandar de machine learning, como el dropout, no se pueden aplicar a las redes
KAN

Proponer lineas futuras de investigacién: en la seccion 6.1 se han enumerado
las muchas posibles lineas de investigacién posibles. Como las redes KAN son una
arquitectura muy reciente, existen muchas lineas de investigacion interesantes, como la
implementacién de las redes KAN en otros tipos de arquitecturas (como los transformers
o las redes recurrentes) o el estudio de posibles técnicas de machine learning especificas
a las redes KAN

Conclusiones personales

Durante la realizacién de este trabajo, ha sido necesario aprender sobre un tema novedoso y
poco investigado. Esto ha requerido una indagacién diligente de las pocas publicaciones sobre

76 CONCLUSIONES

el tema, ademaés de gran cantidad de prueba y error a la hora de realizar la implementacién
propia y los experimentos. No obstante, aunque ha sido un trabajo bastante extenso y largo,
considero que he aprendido muchisimo durante la realizacién del mismo.

Lo primero, gracias a este trabajo he reforzado profundamente mis conocimientos de inte-
ligencia artificial. Al tener que explicar muchos de estos conceptos fundamentales de forma
breve pero préactica, he tenido que indagar a cerca de una gran cantidad de estos conocimien-
tos, aprendiendo mucho al repasar y revisar todas las ideas fundamentales de la inteligencia
artificial. Especialmente, al intentar explicar el algoritmo de retropropagacion de las redes
neuronales, he tenido que aprender bastantes detalles para poder realizar una explicacién
detalla e intuitiva del algoritmo.

Mais importante ain, para poder realizar este trabajo he necesitado aprender sobre las redes
KAN. Uno de los principales problemas ha sido la falta de informacién a cerca del tema, al
existir una cantidad muy limitada de publicaciones y de informacién disponible, dado lo
reciente que es la arquitectura KAN. Esto es en parte lo que ha hecho que el trabajo sea tan
satisfactorio e interesante, ya que investigar y aprender a cerca de un tema tan novedoso de
la inteligencia artificial no es algo que haya hecho anteriormente.

Las principales dificultades del trabajo han ocurrido a la hora de realizar la implementacion
propia en Python. Dediqué una gran cantidad de tiempo a perfeccionarla y a corregir nume-
rosos problemas que habian surgido, ya que durante todo su desarrollo la implementacién ha
presentado multiples problemas constantes, la mayoria causados por la falta de informacion al
respecto. Esto me ha obligado a experimentar mucho durante la realizacién de la implemen-
tacion, probando multiples alternativas y opciones hasta resolver los problemas existentes.
Ha sido mediante la correccién de estos problemas y mediante el perfeccionamiento de la
implementaciéon que he aprendido muchos de los detalles especificos de las redes KAN. Estos
detalles no solo me han ayudado a reforzar mi intuicién y conocimiento a cerca de las redes
KAN, si no que me han permitido realizar una mejor explicacién de las mismas durante el
desarrollo del trabajo.

Durante los experimentos, también han surgido una multitud de problemas, especialmente
causados por lo experimentales y recientes que son muchas de las implementaciones de las re-
des KAN, especialmente teniendo en cuenta que se han utilizado redes KAN convolucionales.
A parte de reforzar mis conocimientos de pytorch, he aprendido mucho a cerca de como im-
plementar modelos personalizados KAN. Esto ha sido en gran parte por que he necesitado en
multiples ocasiones leer y analizar el cédigo fuente de las implementaciones KAN utilizadas
en los experimentos, ya que muchas de estas implementaciones tienen una documentacién
muy poco detallada, o incluso en algunos casos no disponen de ninguna documentacién.

Incluso teniendo en cuenta todos los problemas y dificultades, considero que el trabajo ha
sido una experiencia muy enriquecedora para mis conocimientos de inteligencia artificial y
machine learning, ya que me ha permitido reforzar muchas de las ideas y conceptos fundamen-
tales de estos campos. Ademas, la realizacién del trabajo me ha permitido aprender mucho
a cerca de un tema muy interesante y novedoso, y me ha ofrecido una nueva perspectiva a
cerca del desarrollo e implementacién de modelos de inteligencia artificial.

Bibliografia

1]

8]

[9]

L. K. Boran and A. H. Joya, “From Pixels to Predictions: A Comprehensive Survey of
Image Classification,” International Journal for Research in Applied Science & Enginee-
ring Technology, vol. 12, no. 11, 2024.

L. Qin, Q. Chen, X. Feng, Y. Wu, Y. Zhang, Y. Li, M. Li, W. Che, and P. S. Yu, “Large
Language Models Meet NLP: A Survey,” 2024.

S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, “A Survey
of Modern Deep Learning based Object Detection Models,” 2021.

M. T. Augustine, “A Survey on Universal Approximation Theorems,” 2024.

K. A. N., “On the representation of continuous functions of many variables by super-
position of continuous functions of one variable and addition,” Translations American
Mathematical Society, vol. 2, no. 28, pp. 55-59, 1963.

Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljac¢i¢, T. Y. Hou, and M. Teg-
mark, “KAN: Kolmogorov-Arnold Networks,” 2024.

Geeks for Geeks, “Underfitting and Overfitting.” https://wuw.geeksforgeeks.org/
underfitting-and-overfitting-in-machine-learning/. Accedido: 19/4/2025.

Geeks for Geeks, “Unsupervised Learning.” https://www.geeksforgeeks.org/
unsupervised-learning/. Accedido: 19/4/2025.

Geeks for Geeks, “Reinforcement Learning.” https://www.geeksforgeeks.org/
what-is-reinforcement-learning/. Accedido: 19/4/2025.

D. Kriesel, “A Brief Introduction to Neural Networks,” 2007.

C. A. L. Bailer-Jones, R. Gupta, and H. P. Singh, “An introduction to Artificial Neural
Networks,” 2001.

A. M. Geoffrion, “Objective function approximations in mathematical programming,”
Mathematical Programming, vol. 13, pp. 2337, Dec 1977.

Geeks for Geeks, “Activation Functions.” https://www.geeksforgeeks.org/
activation-functions-neural-networks/. Accedido: 19/4/2025.

K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” 2015.

Better Explained, “Intuitive guide to convolution.” https://betterexplained.com/
articles/intuitive-convolution/. Accedido: 20/4/2025.

7

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/unsupervised-learning/
https://www.geeksforgeeks.org/unsupervised-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/what-is-reinforcement-learning/
https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://www.geeksforgeeks.org/activation-functions-neural-networks/
https://betterexplained.com/articles/intuitive-convolution/
https://betterexplained.com/articles/intuitive-convolution/

78 BIBLIOGRAFIA

[16] Janosh Riebesell, “TikZ.net: Convolution Operator.” https://tikz.net/conv2d/. Ac-
cedido: 21/2/2025.

[17] Dhanush ~ Kumar, “Max Pooling” https://medium.com/@danushidk507/
max-pooling-ef545993b6e4, 2023. Accedido: 20/4/2025.

[18] Computer Science Wiki, “MaxpoolSample2.png.” https://computersciencewiki.org/
index.php/File:MaxpoolSample2.png. Accedido: 20/4/2025.

[19] Geeks for Geeks, “Common Loss Functions.” https://www.geeksforgeeks.org/
ml-common-loss-functions/, 2025. Accedido: 20/4/2025.

[20] Brent Scarff, “Understanding Backpropagation.” https://towardsdatascience.com/
understanding-backpropagation-abcc509ca9d0/, 2021. Accedido: 20/4/2025.

[21] Pytorch, “torch.optim.” https://docs.pytorch.org/docs/stable/optim.html. Acce-
dido: 21/5/2025.

[22] H. Bichri, A. Chergui, and H. Mustapha, “Investigating the Impact of Train / Test Split
Ratio on the Performance of Pre-Trained Models with Custom Datasets,” International
Journal of Advanced Computer Science and Applications, vol. 15, 01 2024.

[23] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learning:
With applications in R, p. 176. Springer US Springer, 2013.

[24] H. Phillips, “A Simple Introduction to Softmax.” https://medium.com/
Ohunter-j-phillips/a-simple-introduction-to-softmax-287712d69bac. Ac-
cedido: 11/5/2025.

[25] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On Calibration of Modern Neural
Networks,” in Proceedings of the 34th International Conference on Machine Learning
(D. Precup and Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning Research,
pp- 1321-1330, PMLR, 06-11 Aug 2017.

[26] Geeks for Geeks, “Metrics for Machine Learning models.” https://www.geeksforgeeks.
org/metrics-for-machine-learning-model/. Accedido: 11/5/2025.

[27] R. Sandhu, “Class Imbalance Vs Accuracy.” https://medium.com/@rajsandhul989/
class-imbalance-vs-accuracy-9739f5deece0. Accedido: 11/5/2025.

[28] S. Amarendra, “Optimizing Parameter Efficiency in Machine Learning Models: A Fo-
cus on Reducing Memory Overhead with L-BFGS-Optimized Algorithms,” Journal of
Electrical Systems, vol. 20, pp. 298-314, 04 2024.

[29] Y. Yang, H. Kang, and B. Mirzasoleiman, “Towards Sustainable Learning: Coresets for
Data-efficient Deep Learning,” International Conference on Machine Learning (ICML),
2023.

[30] T. Y. Liu and B. Mirzasoleiman, “Data-Efficient Augmentation for Training Neural
Networks,” Advances in Neural Information Processing Systems (NeurIPS), 2022.

https://tikz.net/conv2d/
https://medium.com/@danushidk507/max-pooling-ef545993b6e4
https://medium.com/@danushidk507/max-pooling-ef545993b6e4
https://computersciencewiki.org/index.php/File:MaxpoolSample2.png
https://computersciencewiki.org/index.php/File:MaxpoolSample2.png
https://www.geeksforgeeks.org/ml-common-loss-functions/
https://www.geeksforgeeks.org/ml-common-loss-functions/
https://towardsdatascience.com/understanding-backpropagation-abcc509ca9d0/
https://towardsdatascience.com/understanding-backpropagation-abcc509ca9d0/
https://docs.pytorch.org/docs/stable/optim.html
https://medium.com/@hunter-j-phillips/a-simple-introduction-to-softmax-287712d69bac
https://medium.com/@hunter-j-phillips/a-simple-introduction-to-softmax-287712d69bac
https://www.geeksforgeeks.org/metrics-for-machine-learning-model/
https://www.geeksforgeeks.org/metrics-for-machine-learning-model/
https://medium.com/@rajsandhu1989/class-imbalance-vs-accuracy-9739f5deece0
https://medium.com/@rajsandhu1989/class-imbalance-vs-accuracy-9739f5deece0

BIBLIOGRAFIA 79

[31]
[32]

[33]
[34]

[35]

[36]

[37]

[42]

[43]
[44]

[45]

[46]

[47]

F. Faghri, “Training Efficiency and Robustness in Deep Learning,” 2021.

J. Thiyagalingam, M. Shankar, G. Fox, and T. Hey, “Scientific Machine Learning bench-
marks,” Nature Reviews Physics, vol. 4, pp. 413—420, Jun 2022.

C. Wang, “Calibration in Deep Learning: A Survey of the State-of-the-Art,” 2024.

M. Pavlovic, “Understanding Model Calibration: A gentle introduction and visual ex-
ploration of calibration and the expected calibration error (ECE),” 2025.

NapsterInBlue, “Using calibration curves to pick your classifier.” https:
//napsterinblue.github.io/notes/machine_learning/model_selection/
calibration_curves/. Accedido: 11/5/2025.

Gido M. van de Ven and Nicholas Soures and Dhireesha Kudithipudi, “Continual Lear-
ning and Catastrophic Forgetting,” 2024.

M. McCloskey and N. J. Cohen, “Catastrophic Interference in Connectionist Networks:
The Sequential Learning Problem,” in Catastrophic Interference in Connectionist Net-
works (G. H. Bower, ed.), vol. 24 of Psychology of Learning and Motivation, pp. 109-165,
Academic Press, 1989.

D.-W. Zhou, Q.-W. Wang, Z.-H. Qi, H.-J. Ye, D.-C. Zhan, and Z. Liu, “Class-Incremental
Learning: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 46, no. 12, p. 9851-9873, 2024.

A. D. Bodner, A. S. Tepsich, J. N. Spolski, and S. Pourteau, “Convolutional kolmogorov-
arnold networks,” 2025.

V. Starostin, “ConvKAN.” https://github.com/StarostinV/convkan. Accedido:
12/5,/2025.

G. Farin, “8 - B-Spline Curves,” in Curves and Surfaces for CAGD (Fifth Edition)
(G. Farin, ed.), The Morgan Kaufmann Series in Computer Graphics, pp. 119-146,
Morgan Kaufmann, fifth edition ed., 2002.

P. Gupta, “KAN Tutorial: Splines.” https://github.com/pg2455/KAN-Tutorial/
blob/main/1_splines.ipynb, 2024. Accedido: 3/2/2025.

Z. Li, “FastKAN.” https://github.com/ZiyaolLi/fast-kan. Accedido: 12/5/2025.

C. K. Shene, “De Boor’s Algorithm.” https://pages.mtu.edu/~shene/COURSES/
cs3621/NOTES/spline/de-Boor.html. Accedido: 20/4/2025.

”

C.-K. Shene, “Derivatives of a B-spline Curve.” https://pages.mtu.edu/~shene/
COURSES/cs3621/NOTES/spline/B-spline/bspline-derv.html. Accedido: 7/2/2025.

Neil Dodgson, “B-splines.” https://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/
SMAG/node4.html. Accedido: 20/4/2025.

T. J. Rivlin, Chebyshev polynomials. Courier Dover Publications, 2020.

https://napsterinblue.github.io/notes/machine_learning/model_selection/calibration_curves/
https://napsterinblue.github.io/notes/machine_learning/model_selection/calibration_curves/
https://napsterinblue.github.io/notes/machine_learning/model_selection/calibration_curves/
https://github.com/StarostinV/convkan
https://github.com/pg2455/KAN-Tutorial/blob/main/1_splines.ipynb
https://github.com/pg2455/KAN-Tutorial/blob/main/1_splines.ipynb
https://github.com/ZiyaoLi/fast-kan
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/de-Boor.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/de-Boor.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-derv.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-derv.html
https://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/SMAG/node4.html
https://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/SMAG/node4.html

80

BIBLIOGRAFIA

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

S. SS, K. AR, G. R, and A. KP, “Chebyshev Polynomial-Based Kolmogorov-Arnold
Networks: An Efficient Architecture for Nonlinear Function Approximation,” 2024.

Guo Dawei, “ChebyKAN.” https://github.com/SynodicMonth/ChebyKAN. Accedido:
20/4/2025.

Wolfram MathWorld, “Fourier = Series” https://mathworld.wolfram.com/
FourierSeries.html. Accedido: 20/4/2025.

M. Bécher, “Introduction to the Theory of Fourier’s Series,” Annals of Mathematics,
vol. 7, no. 3, pp. 81-152, 1906.

J. Zhang, Y. Fan, K. Cai, and K. Wang, “Kolmogorov-Arnold Fourier Networks,” 2025.

Gist Noesis, “FourierKAN.” https://github.com/GistNoesis/FourierKAN/N. Accedi-
do: 20/4/2025.

Wolfram MathWorld, “Jacobi Polynomial” https://mathworld.wolfram.com/
JacobiPolynomial.html. Accedido: 20/4/2025.

Wolfram Mathworld, “Gamma Function.” https://mathworld.wolfram.com/
GammaFunction.html. Accedido: 20/4/2025.

Alireza Afzal Aghaei, “fKAN: Fractional Kolmogorov-Arnold Networks with trainable
Jacobi basis functions,” 2024.

SpaceLearner, “JacobiKAN.” https://github.com/SpaceLearner/JacobiKAN. Accedi-
do: 20/4/2025.

O. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE Signal Processing
Magazine, vol. 8, no. 4, pp. 14-38, 1991.

Z. Bozorgasl and H. Chen, “Wav-KAN: Wavelet Kolmogorov-Arnold Networks,” 2024.

Zavareh Bozorgasl and Hao Chen, “Wav-KAN.” https://github.com/zavarehl/
Wav-KAN. Accedido: 20/4/2025.

D. H. Griffel, “Wavelets and operators,” The Mathematical Gazette, vol. 79, no. 484,
p. 227-228, 1995.

Q. Qiu, T. Zhu, H. Gong, L. Chen, and H. Ning, “ReLU-KAN: New Kolmogorov-Arnold
Networks that Only Need Matrix Addition, Dot Multiplication, and ReLU,” 2024.

Q. Qiu and T. Zhu, “ReLU-KAN.” https://github.com/quiqi/relu_kan. Accedido:
20/4/2025.

Y. Wang, N. Wagner, and J. M. Rondinelli, “Symbolic regression in materials science,”
MRS Communications, vol. 9, no. 3, p. 793-805, 2019.

J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution detection: A sur-
vey,” 2024.

https://github.com/SynodicMonth/ChebyKAN
https://mathworld.wolfram.com/FourierSeries.html
https://mathworld.wolfram.com/FourierSeries.html
https://github.com/GistNoesis/FourierKAN/N
https://mathworld.wolfram.com/JacobiPolynomial.html
https://mathworld.wolfram.com/JacobiPolynomial.html
https://mathworld.wolfram.com/GammaFunction.html
https://mathworld.wolfram.com/GammaFunction.html
https://github.com/SpaceLearner/JacobiKAN
https://github.com/zavareh1/Wav-KAN
https://github.com/zavareh1/Wav-KAN
https://github.com/quiqi/relu_kan

BIBLIOGRAFIA 81

[66]

[67]

[68]

[69]
[70]
[71]

[72]

73]

[74]

[75]

[76]

[77]

[78]

[79]

[82]

[83]

Pytorch, “SiLU.” https://pytorch.org/docs/stable/generated/torch.nn.SiLU.
html. Accedido: 7/2/2025.

NumPy, “NumPy user guide.” https://numpy.org/doc/stable/user/index.html. Ac-
cedido: 27/5/2025.

W. Schools, “NumPy Array Slicing” https://www.w3schools.com/python/numpy/
numpy_array_slicing.asp. Accedido: 7/2/2025.

S. K. Kumar, “On weight initialization in deep neural networks,” 2017.
Pytorch Foundation, “Pytorch.” https://pytorch.org/. Accedido: 11/5/2025.

Pytorch, “AdamW.” https://pytorch.org/docs/stable/generated/torch.optim.
AdamW.html. Accedido: 3/5/2025.

Pytorch, “ExponentialLR.” https://pytorch.org/docs/stable/generated/torch.
optim.lr_scheduler.ExponentialLR.html. Accedido: 3/5/2025.

Papers with Code, “Datasets: Image Classification.” https://paperswithcode.com/
datasets?task=image-classification. Accedido: 18/5/2025.

L. Deng, “The MNIST Database of Handwritten Digit Images for Machine Learning
Research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141-142, 2012.

A. Krizhevsky, “The CIFAR-10 and CIFAR-100 datasets.” https://www.cs.toronto.
edu/~kriz/cifar.html. Accedido: 12/5/2025.

Pytorch, “Conv2d.” https://docs.pytorch.org/docs/stable/generated/torch.nn.
Conv2d.html. Accedido: 12/5/2025.

Pytorch, “Linear.” https://docs.pytorch.org/docs/stable/generated/torch.nn.
Linear.html. Accedido: 12/5/2025.

M. Amirian and F. Schwenker, “Radial Basis Function Networks for Convolutional Neu-
ral Networks to Learn Similarity Distance Metric and Improve Interpretability,” IEEE
Access, vol. 8, p. 123087123097, 2020.

Z. Li, “FastK AN README.” https://github.com/ZiyaolLi/fast-kan/blob/master/
README.md. Accedido: 13/5/2025.

M. G. Altarabichi, “DropKAN: Regularizing KANs by masking post-activations,” 2024.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber, “LSTM.:
A Search Space Odyssey,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 28, no. 10, p. 2222-2232, 2017.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Transac-
tions on Signal Processing, vol. 45, no. 11, p. 2673-2681, 1997.

X. Yang and X. Wang, “Kolmogorov-arnold transformer,” 2024.

https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html
https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html
https://numpy.org/doc/stable/user/index.html
https://www.w3schools.com/python/numpy/numpy_array_slicing.asp
https://www.w3schools.com/python/numpy/numpy_array_slicing.asp
https://pytorch.org/
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html
https://paperswithcode.com/datasets?task=image-classification
https://paperswithcode.com/datasets?task=image-classification
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://github.com/ZiyaoLi/fast-kan/blob/master/README.md
https://github.com/ZiyaoLi/fast-kan/blob/master/README.md

82 BIBLIOGRAFIA

[84] A. Dash, “kanformers.” https://github.com/akaashdash/kansformers. Accedido:
17/5/2025.

[85] Z. Chen, Gundavarapu, and W. DI, “Vision-KAN.” https://github.com/
chenziwenhaoshuai/Vision-KAN. Accedido: 17/5/2025.

[86] M. Poluektov and A. Polar, “Construction of the Kolmogorov-Arnold representation
using the Newton-Kaczmarz method,” 2025.

https://github.com/akaashdash/kansformers
https://github.com/chenziwenhaoshuai/Vision-KAN
https://github.com/chenziwenhaoshuai/Vision-KAN

	Introducción
	Objetivos
	Estructura del trabajo

	Inteligencia artificial
	Función objetivo
	Neuronas artificiales
	Funciones de activación

	Redes neuronales artificiales
	Capas densas
	Capas convolucionales

	Entrenamiento
	Retropropagación
	Descenso por gradiente

	Evaluación de modelos
	División de datos
	Logits
	Métricas de rendimiento
	Métricas de eficiencia
	Calibración
	Aprendizaje continuo y el olvido catastrófico

	Redes Kolmogórov-Arnold
	Teorema de representación
	Capas KAN
	Capas densas
	Capas convolucionales

	Funciones KAN
	Splines
	Función residual

	Entrenamiento
	Retropropagación
	Grid extension

	Propiedades
	Interpretabilidad
	Aprendizaje continuo
	Generalización de los datos

	Implementación en Python
	Funciones auxiliares
	Clase KANNeuron
	Método spline()
	Método train()
	Otros métodos
	Código completo

	Clase KANLayer
	Método __call__()
	Método train()
	Otros métodos
	Código completo

	Clase KAN

	Experimentos
	Conjuntos de datos utilizados
	MNIST
	CIFAR-10

	Arquitecturas utilizadas
	Redes CNN
	Redes Conv-KAN

	Eficiencia respecto al número de parámetros
	MNIST
	CIFAR-10
	Resultados

	Eficiencia respecto al número de datos de entrenamiento
	MNIST
	CIFAR-10
	Resultados

	Calibración
	MNIST
	CIFAR-10
	Resultados

	Aprendizaje continuo
	MNIST
	CIFAR-10
	Resultados

	Conclusiones
	Futuras líneas de investigación
	Cumplimiento de objetivos
	Conclusiones personales

	Bibliografía

